Skip to main content
Log in

Glycerol translocation in Condylactis gigantea

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sodium cyanide (NaCN) was used to partially uncouple respiration and photosynthesis in the symbiotic sea anemone Condylactis gigantea. NaCN significantly increased the ratio of gross photosynthesis to respiration in both intact tentacles and isolated zooxanthellae (Symbiodinium microadriaticum), increased carbon translocation from 17.7±3.5% of total fixed in controls to 43.5±5.8%, and doubled the amount of photosynthetically fixed carbon accumulating in the coelenterate host over that in controls. Only 2% of the non-particulate radioactivity recovered in the host tissue was 14C-glycerol when uninhibited symbiotic tentacles were incubated in 14C-bicarbonate for 1 h. At 10-5 M NaCN, approximately 25% of the host nonparticulate radioactivity was recovered as 14C-glycerol, the absolute concentration of glycerol in the host tissue was three times higher than in controls, and 14C-glycerol was found in the medium. While glycerol has been proposed to play a major role in the translocation of photosynthetically fixed carbon from zooxanthellae to their coelenterate hosts, its concentration has never been measured in the animal and algal components of the symbiosis. The isolated zooxanthellae contained 3.62±0.33 mM glycerol, 26x the 0.141±0.02 mM found in the anemone. Aposymbiotic anemone tissue contained 0.169±0.06 mM glycerol. The rate of glycerol mineralization was not saturated even when exogenous glycerol levels were 70x internal concentrations. These data show that respiration and photosynthesis in symbiotic associations may be partially uncoupled by NaCN, and that this uncoupling allows the verification of the translocation and rapid catabolism of glycerol within the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Battey, J. F. and J. S. Patton: A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis. Mar. Biol. 79, 27–38 (1984)

    Google Scholar 

  • Bell, J. D., I. L. O. Buxton and L. L. Brunton: A kinetic isotope dilution assay for glycerol. Analyt. Biochem. 139, 305–308 (1984)

    Google Scholar 

  • Bevington, P. R.: Data reduction and error analysis for the physical sciences, 336 pp. New York: McGraw Hill Book Co. 1969

    Google Scholar 

  • Blank, R. J. and R. K. Trench: Speciation and symbiotic dinoflagellates. Science, N.Y. 229, 656–658 (1985)

    Google Scholar 

  • Blanquet, R. S., J. C. Nevenzel and A. A. Benson. Acetate incorporation into the lipids of the sea anemone Anthopleura elegantissima and its associated zooxanthellae. Mar. Biol. 54, 185–194 (1979)

    Google Scholar 

  • Bligh, E. G. and W. J. Dyer: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

    Google Scholar 

  • Cook, C.: Metabolic interchanges in algae-invertebrate symbiosis. Int. Rev. Cytol. 14, 177–210 (1983)

    Google Scholar 

  • Crossland, C. J., D. J. Barnes and M. A. Borowitzka: Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60, 81–90 (1980)

    Google Scholar 

  • Crumeyrolles-Duclaux, G.: Premières observations ultrastructurales sur les zooxanthelles de Viguieriotes edwardsii. Protistologica 5, 471–479 (1969)

    Google Scholar 

  • D'agnolo, G. D., I. S. Rosenfeld, J. Anaya, S. Omura and P. R. Vagelos: Inhibition of fatty acid synthesis by the antibiotic cerulenin, specific inactivation of β-ketoacyl-acyl carrier protein synthetase. Biochim. biophys. Acta 326, 155–166 (1973)

    Google Scholar 

  • Davies, P. S.: The role of zooxanthellae in the nutritional energy requirements of Pocillopora evdouxi. Coral Reefs 2, 181–186 (1984)

    Google Scholar 

  • Hartree, E. F.: Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analyt. Biochem. 48, 422–427 (1972)

    Google Scholar 

  • Hellebust, J. A.: Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10, 192–206 (1965)

    Google Scholar 

  • Goreau, T. J.: Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proc. R. Soc. (Ser. B) 196, 291–315 (1977)

    Google Scholar 

  • Hotta, S. S.: Oxidative metabolism of isolated brain mitochondria: changes caused by aminooxyacetic acid. Archs Biochem. Biophys. 127, 132–139 (1968)

    Google Scholar 

  • Kellogg, R. B. and J. S. Patton: Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar. Biol. 75, 137–149 (1983)

    Google Scholar 

  • Lewis, D. H., and D. C. Smith: The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proc. R. Soc. (Ser. B) 178, 111–129 (1971)

    Google Scholar 

  • Muscatine, L.: Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, N.Y. 156, 516–519 (1967)

    Google Scholar 

  • Muscatine, L.: Nutrition of corals. In: Coelenterate biology: reviews and new perspectives, pp 359–395. Ed. by L. Muscatine and H. M. Lenhoff. New York: Academic Press 1974

    Google Scholar 

  • Muscatine, L. and E. Cernichiari: Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137, 506–523 (1969)

    Google Scholar 

  • Muscatine, L., P. G. Falkowski, J. W. Porter and Z. Dubinsky: Fate of photosynthetic fixed carbon in light and shadeadapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. (Ser. B) 222, 181–202 (1984)

    Google Scholar 

  • Muscatine, L., R. R. Pool and E. Cernichiari: Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol. 13, 298–308 (1972)

    Google Scholar 

  • Packter, N. M. and P. K. Stumpf: Fat metabolism in higher plants. Archs Biochem. Biophys. 167, 655–667 (1975)

    Google Scholar 

  • Patton, J. S., S. Abraham and A. A. Benson: Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol. 44, 235–247 (1977)

    Google Scholar 

  • Patton, J. S., J. F. Battey, M. W. Rigler, J. W. Porter, C. C. Black and J. E. Burris: A comparison of the metabolism of bicarbonate 14C and acetate 1-14C and the variability of the species lipid compositions in reef corals. Mar. Biol. 75, 121–130 (1983)

    Google Scholar 

  • Patton, J. S., and J. E. Burris: Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar. Biol. 75, 131–136 (1983)

    Google Scholar 

  • Schlichter, D., B. P. Kremer and A. Svoboda: Zooxanthellae providing assimilatory power for the incorporation of exogenous acetate in Heteroxenia fuscescens (Cnidaria: Alcyonaria). Mar. Biol. 83, 277–286 (1984)

    Google Scholar 

  • Schlichter, D., A. Svoboda and B. P. Kremer: Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983)

    Google Scholar 

  • Schmitz, K. and B. P. Kremer: Carbon fixation and analysis of assimilates in a coral-dinoflagellate symbiosis. Mar. Biol. 42, 305–313 (1977)

    Google Scholar 

  • Sharp, H. H.: Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22, 381–399 (1977)

    Google Scholar 

  • Trench, R. K.: The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates: I. the assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. R. Soc. (Ser. B) 177, 225–235 (1971a)

    Google Scholar 

  • Trench, R. K.: The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates: II. Liberation of fixed 14C by zooxanthellae in vitro. Proc. R. Soc. (Ser. B) 177, 237–250 (1971b)

    Google Scholar 

  • Trench, R. K.: The cell biology of plant-animal symbiosis. A. Rev. Pl. Physiol. 30, 485–532 (1979)

    Google Scholar 

  • Wishnick, M. and M. D. Lane: Inhibition of ribulose disphosphate carboxylase by cyanide. J. biol. Chem. 244, 55–59 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battey, J.F., Patton, J.S. Glycerol translocation in Condylactis gigantea . Mar. Biol. 95, 37–46 (1987). https://doi.org/10.1007/BF00447483

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00447483

Keywords

Navigation