Advertisement

Marine Biology

, Volume 102, Issue 4, pp 557–564 | Cite as

Chemotactic effects of nutrients on spores of the kelps Macrocytis pyrifera and Pterygophora california

  • C. D. Amsler
  • M. Neushul
Article

Abstract

Fertile Macrocystis pyrifera (L.) C. Ag. and Pterygophora californica Rupr. were collected in California, USA in 1987 to 1988. Spores of the kelps exhibited both positive and negative chemotaxis to a variety of chemical nutrients. Chemotaxis was measured by counting the number of spores that swam into flattened capillary tubes with the chemical relative to the number that swam into control tubes. Video-motion-analysis also showed that P. californica spores swam towards a nitrogen source more often than they swam away. Similar chemotactic effects were observed in both 2 and 8 h-old preparations. M. pyrifera spores swam towards nitrate, ammonium (1 to 90 μM), glycine, aspartate iron (1 μm), boron, cobalt, and manganese. Negative chemotaxis was elicited by ammonium (1 000 μM) and iron (45 μM). Neither phosphate nor zinc had significant effects. P. californica spores were attracted by nitrate, ammonium, phosphate, and boron. Negative chemotactic effects were recorded with iron (45 μM) and manganese. Iron (1 μM), cobalt, and zinc had no effect. It is suggested that chemotactic behavior is an adaptation which allows the kelp spores to find and settle in microhabitats suitable for gamatophytic growth and reproduction.

Keywords

Iron Phosphate Ammonium Zinc Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adler, J. (1973). A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. gen. Microbiol. 74: 77–91Google Scholar
  2. Amsler, C. D. (1988a). Kelp spore chemotaxis and chemoperception. J. Phycol. 24 (Suppl.): p. 7Google Scholar
  3. Amsler, C. D. (1988b). Kelp spore photosynthesis, respiration, and pigmentation. J. Phycol. 24 (Suppl.): p. 4Google Scholar
  4. Amsler, C. D., Searles, R. B. (1980). Vertical distribution of seaweed spores in a water column offshore of North Carolina. J. Phycol. 16: 617–619Google Scholar
  5. Bell, W., Mitchell, R. (1972). Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. mar. biol. Lab., Woods Hole 143: 265–277Google Scholar
  6. Charters, A. C., Neushul, M. (1979). A hydrodynamically defined culture system for benthic seaweeds. Aquat. Bot. 6: 67–78Google Scholar
  7. Chet, I., Mitchell, R. (1976). Ecological aspects of chemotactic behavior. A. Rey. Microbiol. 30: 221–239Google Scholar
  8. Crisp, D. J. (1974). Factors influencing the settlement of marine invertebrate larvae. In: Grant, P. T., Mackie, A. M. (eds.) Chemoreception in marine organisms. Academic Press, London p. 177–265Google Scholar
  9. Darwin, C (1860). The voyage of the Beagle. Anchor Books, Doubleday & Co., Garden City, N.Y.Google Scholar
  10. Davies, A. G. (1970). Iron, chelation and the growth of marine phytoplankton. I. Growth kinetics and chlorophyll production in cultures of the euryhaline flagellate Dunalliela tertiolecta under iron-limiting conditions. J. mar. biol. Ass. U.K. 50: 65–86Google Scholar
  11. DeBoer, J. A. (1981). Nutrients. In: Lobban, C. S., Wynne, M. J. (eds.) The biology of seaweeds. University of California Press, Berkeley, p. 356–392Google Scholar
  12. Ebeling, A. W., Larson, R. J., Alevizon, W. S., Bray, R. N. (1979). Annual variability of reef-fish assemblages in kelp forests off Santa Barbara, California. Fish. Bull. U.S. 78: 361–377Google Scholar
  13. Fitt, W. K. (1985). Chemosensory responses of the symbiotic dinoflagellate Symbiodinium microadriaticum (Dinophyceae). J Phycol. 21: 62–67Google Scholar
  14. Flint, R. W. (1985). Coastal ecosystem dynamics: relevance of benthic processes. Mar. Chem. 16: 351–367Google Scholar
  15. Foster, M. S., Schiel, D. R. (1985). The ecology of giant kelp forests in California: a community profile. U.S. Fish Wildl. Serv. biol. Rep. 85 (7.2): 1–152Google Scholar
  16. Geller, A., Müller, D. G. (1981) Analysis of the flagellar beat pattern of male Ectocarpus siliculosus gametes (Phaeophyta) in relation to chemotactic stimulation by female cells. J. exp. Biol. 92: 53–66Google Scholar
  17. Guillard, R. R. L. (1963). Organic sources of nitrogen for marine centric diatoms. In: Oppenheimer, C. H. (ed.) Symposium on marine microbiology. Charles C. Thomas, Springfield, Illinois, p. 93–104Google Scholar
  18. Haines, K. C., Wheeler, P. A. (1978). Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J. Phycol. 14: 319–324Google Scholar
  19. Harrison, P. J., Waters, R. E., Taylor, F. R. J. (1980). A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J. Phycol. 16: 28–35Google Scholar
  20. Hauser, D. C. R., Levandowsky, M., Hunter, S. H., Chunosoff, L., Hollwitz, J. S. (1975). Chemosensory responses by the heterotrophic marine dinoflagellate Crythecodinium cohnii. Microb. Ecol. 1: 246–254Google Scholar
  21. Hauser, D. C. R., Petrylak, D., Singer, G., Levandowsky, M. (1978). Calcium-dependent sensory-motor response of a marine dinoflagellate to CO2. Nature, Lond. 273: 230–231Google Scholar
  22. Henry, E. C., Cole, K. M. (1982a). Ultrastructure of swarmers in the Laminariales. I. Zoospores. J. Phycol. 18: 550–569Google Scholar
  23. Henry, E. C., Cole, K. M. (1982b). Ultrastructure of swarmers in the Laminariales. II. Sperm. J. Phycol. 18: 570–579Google Scholar
  24. Hsiao, S. I. C., Druehl, L. D. (1973a). Environmental control of gametogenesis in Laminaria saccharina. II. Correlation of nitrate and phosphate concentrations with gametogenesis and selected metabolites. Can. J. Bot. 51: 829–839Google Scholar
  25. Hsiao, S. I. C., Druehl, L. D. (1973b). Environmental control of gametogenesis in Laminaria saccharina. III. The effects of different iodine concentrations, and chloride and iodide ratios. Can. J. Bot. 51: 989–997Google Scholar
  26. Jackson, G. A. (1977). Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California. Limnol. Oceanogr. 22: 979–995Google Scholar
  27. Jackson, G. A. (1987). Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32: 1253–1266Google Scholar
  28. Kawai, H. (1988). A flavin-like autofluorescent substance in the posterior flagellum of golden and brown algae. J. Phycol. 24: 114–117Google Scholar
  29. Khew, K. L., Zentmyer, G. A. (1973). Chemotactic response of zoospores of five species of Phytophthora. Phytopathology 63: 1511–1517Google Scholar
  30. Kuwabara, J. S. (1982). Micronutrients and kelp cultures: evidence for cobalt and manganese deficiency in southern California deep seawater. Science, N.Y. 216: 1219–1221Google Scholar
  31. Kuwabara, J. S., North, W. J. (1980). Culturing microscopic stages of Macrocystis pyrifera (Phaeophyta) in aquil, a chemically defined medium. J. Phycol. 16: 546–549Google Scholar
  32. Levandowsky, M., Hauser, D. C. R. (1978). Chemosensory responses of swimming algae and protozoa. Int. Rev. Cytol. 53: 145–210Google Scholar
  33. Machlis, L. (1969). Zoospore chemotaxis in the watermold Allomyces. Physiologia Pl. 22: 126–139Google Scholar
  34. Maier, I (1987). Environmental and pheromonal control of sexual reproduction in Laminaria (Phaeophyceae). In: Wiessner, W., Robinson, D. G., Starr, R. C. (eds.) Algal development. Molecular and cellular aspect. Springer-Verlag, Berlin, p. 66–74Google Scholar
  35. Maier, I., Müller, D. G. (1986). Sexual pheromones in algae. Biol. Bull. mar. biol. Lab., Woods Hole 170: 145–175Google Scholar
  36. Mann, K. H. (1973). Seaweeds: their productivity and strategy for growth. Science, N.Y. 182: 975–981Google Scholar
  37. Mitchell, J., Okubo, A., Fuhrman, J. A. (1985). Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature, Lond. 316: 58–59Google Scholar
  38. Morse, D. E. (1985). Neutrotransmitter-mimic inducers of larval settlement and metamorphosis. Bull. mar. Sci. 37: 697–706Google Scholar
  39. Motomura, T., Sakai, Y. (1981). Effect of chelated iron on oogenesis in Laminaria angustata. Bull. Jap. Soc. scient. Fish. 47: 1535–1540Google Scholar
  40. Motomura, T., Sakai, Y. (1984). Regulation of gametogenesis of Laminaria and Desmarestia (Phaeophyta) by iron and boron. Jap. J. Phycol. 32: 209–215Google Scholar
  41. Müller, D. G. (1964). Die Beteiligung eines Berührungsreizes beim Festsetzen von Algenschwärmen auf dem Substrat. Z. Bot. 52: 193–198Google Scholar
  42. Müller, D. G. (1967). Ein leichtflüchtiges Gyno-Gamon der Braunalge Ectocarpus siliculosus. Naturwissenschaften 54: 496–497Google Scholar
  43. Müller, D. G. (1968). Versuche zur Charakterisierung eines Sexuallockstoffes bei der Braunalge Ectocarpus siliculosus. I. Methoden, Isolierung, und gaschromatographischer Nachweis. Planta 81: 160–168Google Scholar
  44. Müller, D. G., Maier, I., Gassman, G. (1985). Survey on sexual pheromone specificity in Laminariales. Phycologia 24: 475–484Google Scholar
  45. Neushul, M. (1973). Functional interpretation of benthic marine algal morphology. In: Abbott, I. A., Kurogi, M. (eds.) Contributions to the systematics of benthic marine algal morphology. Japanese Society of Phycology, Kobe, p. 47–71Google Scholar
  46. Neushul, M., Harger, B. W. W. (1987). Nearshore kelp cultivation. Yield and genetics. In: Bird, K. T., Benson, P. H. (eds.) Seaweed cultivation for renewable resources. Elsevier Science, Amsterdam, p. 69–93Google Scholar
  47. Nienhuis, P. H. (1969). The significance of the substratum for intertidal algal growth on the artificial rocky shore of the Netherlands. Int. Revue ges. Hydrobiol. 54: 207–215Google Scholar
  48. North, W. J., Gerard, V., Kuwabara, J. (1982). Farming Macrocystis at coastal and oceanic sites. In: Srivastava, L. M. (ed.) Synthetic and degradative processes in marine macrophytes. Walter de Gruyter, Berlin, p. 245–264Google Scholar
  49. Norton, T. A., Fetter, R. (1981). The settlement of Sargassum muticum propagules in stationary and flowing water. J. mar. biol. Ass. U.K. 61: 929–940Google Scholar
  50. Palleroni, N. J. (1976). Chamber for bacterial chemotaxis experiments. Appl. envirl Microbiol. 32: 729–730Google Scholar
  51. Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Watanabe, H., Hattori, A. (eds.) Cultures and collections of algae. Proceedings of U.S. — Japan Conference, Hakone, September 1966. Japanese Society of Plant Physiology, Hakone, p. 63–75Google Scholar
  52. Reed, D. C., Laur, D. R., Ebeling, A. W. (1988). Variation in algal dispersal and recruitment: the importance of episodic events. Ecol. Monogr. 58: 321–335Google Scholar
  53. Roughgarden, J., Gaines, S., Possingham, H. (1988). Recruitment dynamics in complex life cycles. Science, N.Y. 241: 1460–1466Google Scholar
  54. Rowe, G. T., Clifford, C. H., Smith, K. L. (1975). Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Science, N.Y. 255: 215–217Google Scholar
  55. Royle, D. J., Hickman, C. J. (1964). Analysis of factors governing in vitro acculation of zygospores of Pythium aphanidermatum on roots Behavior of zoospores. Can. J. Bot. 10: 151–162Google Scholar
  56. Saito, S. (1972). Growth of Gonium multicoccum in synthetic media. J. Phycol. 8: 169–175Google Scholar
  57. Shanks, A. L., Trent, J. D. (1979). Marine snow: microscale nutrient patches. Limnol. Oceanogr. 24: 850–854Google Scholar
  58. Sibbald, M. J., Albright, L. J., Sibbald, P. R. (1987). Chemosensory responses of a heterotrophic microflagellate to bacteria and several nitrogen compounds. Mar. Ecol. Prog. Ser. 36: 210–204Google Scholar
  59. Sjoblad, R. D., Chet, I., Mitchell, R. (1978a). Chemoreception in the green alga Dunaliella tertiolecta. Curr. Microbiol. 1: 305–307Google Scholar
  60. Sjoblad, R. D., Chet, I., Mitchell, R. (1978b). Quantitative assay for algal chemotaxis. Appl. envirl Microbiol. 36: 847–850Google Scholar
  61. Sjoblad, R. D., Frederikse, P. H. (1981). Chemotactic responses of Chlamydomonas reinhardtii. Molec. cell. Biol. 1: 1057–1060Google Scholar
  62. Spero, H. J. (1985). Chemosensory capabilities in the phagotropic dinoflagellate Gynmnodinium fungiforme. J. Phycol. 21: 181–184Google Scholar
  63. Suto, [Sudo (sic)], S. (1948). Shedding, swimming, and fixing of the zoospores in some species of Laminariaceae. Contr. cent. Fish. Stn Japan 25: 123–128Google Scholar
  64. Van Houten, J., Hansma, H., Kung, C. (1975). Two quantitative assays for chemotaxis in Paramecium. J. comp. Physiol. 104: 211–223Google Scholar
  65. Zeitzschel, B. (1980). Sediment-water interactions in nutrient dynamics. In: Tenore, K. R., Coull, B. C. (eds.) Marine benthic dynamics. University of South Carolina Press, Columbia, p. 195–218Google Scholar
  66. Zimmer-Faust, R. K. (1987). Crustacean chemical perception: towards a theory on optimal chemoreception. Biol. Bull. mar. biol. Lab., Woods Hole 172: 10–29Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • C. D. Amsler
    • 1
  • M. Neushul
    • 1
  1. 1.Department of Biological Sciences and Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations