Marine Biology

, Volume 102, Issue 4, pp 537–544 | Cite as

Population structure in the sexually reproducing sea anemone Oulactis muscosa

  • A. Hunt
  • D. J. Ayre


The intertidal sea anemone Oulactis muscosa (Drayton) is dioecious and most individuals are sexually mature throughout the year. Biochemical genetic evidence was used to determine the genetic structure of populations and to infer the relative contributions of sexual and asexual reproduction to recruitment. Data were collected for six enzyme-encoding loci from local populations spread along 735 km of the south east coast of Australia. The genetic structure of each of the nine local populations studied was consistent with recruitment by sexually produced individuals. In almost all cases, the observed single-locus genotypic frequencies closely matched those expected for hardy-Weinberg equilibria, however, consistent deficits of heterozygotes were detected for all loci. No apparent subdivision of the population was detected within the sampling area. Low levels of genetic differentiation were found between local populations and standardised variance (F ST ) values were similar to those for other species with widespread planktonic dispersal of larvae.


Population Structure Genetic Structure Genetic Differentiation Local Population Genotypic Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ayre, D. J. (1983). The effects of asexual reproduction and intergenotypic aggression on the genotypic structure of populations of the sea anemone Actinia tenebrosa. Oecologia 57: 158–165Google Scholar
  2. Ayre, D. J. (1984a). The effects of sexual and asexual reproduction on geographic variation in the sea anemone Actinia tenebrosa. Oecologia 62: 222–229Google Scholar
  3. Ayre, D. J. (1984b). Effects of environment and population density on the sea anemone Actinia tenebrosa. Aust. J. mar. Freshwat. Res. 35: 735–746Google Scholar
  4. Ayre, D. J. (1988). Evidence for genetic determination of sex in Actinia tenebrosa. J. exp. mar. Biol. Ecol. 116: 23–34Google Scholar
  5. Berger, E. (1973). Gene-enzyme variation in three sympatric species of Littorina. Biol. Bull. mar. biol. Lab., Woods Hole 145: 83–90Google Scholar
  6. Black, R., Johnson, M. S. (1979). Asexual viviparity and population genetics of Actinia tenebrosa. Mar. Biol. 53: 27–31Google Scholar
  7. Bucklin, A. (1985). Biochemical genetic variation, growth and generation of the sea anemone, Metridium, on British shores. J. mar. biol. Ass. U.K. 65: 141–157Google Scholar
  8. Carlgren, O. (1950). Actinaria and Zoantharia from South Australia. K. fysiogr. Sällsk. Lund Förh. 20: 121–135Google Scholar
  9. Carter, M. A., Funnel, M. E. (1980). Reproduction and brooding in Actinia. In: Tardent, P., Tardent, R. (eds.) Developmental and cellular biology of coelenterates. Elsevier/North-Holland Biomedical Press, New York, p. 17–22Google Scholar
  10. Carter, M. A., Thorp, C. H. (1979). The reproduction of Actinia equina L. var. mesembryanthemum. J. mar. biol. Ass. U.K. 59: 989–1001Google Scholar
  11. Chia, F. S. (1976). Sea anemone reproductions: patterns and adaptive radiations. In: Mackie G. O. (ed.) Coelenterate ecology and behaviour. Plenum Press, New York, p. 261–270Google Scholar
  12. Chia, F. S., Spaulding, J. G. (1972). Development and juvenile growth of the sea anemone, Tealia crassicornis. Biol. Bull. mar. biol. Lab., Woods Hole 142: 206–218Google Scholar
  13. Curie-Cohen, M.: (1982). Estimates of inbreeding in a natural population: a comparison of sampling properties. Genetics, Austin, Tex. 100: 339–358Google Scholar
  14. Dunn, D. F. (1975a). Gynodioecy in an animal. Nature, Lond. 253: 528–529Google Scholar
  15. Dunn, D. F. (1975b). Reproduction of the externally brooding sea anemone Epiactus prolifera Verrill 1869. Biol. Bull. mar. biol. Lab., Woods Hole 148: 199–218Google Scholar
  16. Foltz, D. W. (1986). Null alleles as a possible cause of heterozygote deficiencies in the oyster, Crassostrea virginica. Evolution, Lawrence, Kansas 40:869–870Google Scholar
  17. Francis, L. (1973). Clone specific segregation in the sea anemone Anthopleura elegantissima. Biol. Bull. mar. biol Lab., Woods Hole 144: 64–72Google Scholar
  18. Fujii, H. (1987). The predominance of clones in populations of the sea anemone Anthopleura asiatica (Uchida). Biol. Bull. mar. biol. Lab., Woods Hole 172: 202–211Google Scholar
  19. Hamon, B. V. (1965). The East Australian Current, 1960–1964. Deep-Sea Res. 12: 899–921Google Scholar
  20. Hamon, B. V., Godfrey, J. S., Greig, M. A. (1975). The relation between mean sea level, current and wind stress on the east coast of Australia. Aust. J. mar. Freshwat. Res. 26: 389–403Google Scholar
  21. Hoffmann, R. J. (1986). Variation in contributions of asexual reproduction to the genetic structure of populations of the sea anemone Metridium senile. Evolution, Lawrence, Kansas 40: 357–365Google Scholar
  22. Johnson, M. S., Black, R. (1984). The Wahlund effect and the geographical scale variation in the intertidal limpet Siphonaria sp. Mar. Biol. 79: 295–302Google Scholar
  23. Kaplan, S. W. (1983). Intrasexual aggression in Metridium senile. Biol. Bull. mar. biol. Lab., Woods Hole 165: 416–418Google Scholar
  24. Koehn, R. K., Milkman, R., Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution, Lawrence, Kansas 30: 2–32Google Scholar
  25. Larkman, A. (1980). Ultrastructural aspects of gametogenesis in Actinia equina L. In: Tardent P., Tardent R. (eds.) Development and cellular biology of coelenterates. Elsevier/North-Holland Biomedical Press, New York, p. 61–66Google Scholar
  26. Lassen, H. H., Turano, F. J. (1978). Clinal variation and heterozygote deficit at the LAP-locus in Mytilus edulis. Mar. Biol. 49: 245–254Google Scholar
  27. Levinton, J. S., Suchanek, T. H. (1978). Geographic variation, niche breadth and genetic differentiation at different geographic scales in the mussels Mytilus californianus and M. edulis. Mar. Biol. 49: 363–375Google Scholar
  28. Li, C. C. (1976). First course in population genetics. Box Wood Press, Pacific Grove, CaliforniaGoogle Scholar
  29. Mulley, J. C., Latter, B. D. H. (1981). Geographic differentiation of Eastern Australian penaeid prawn populations. Aust. J. mar. Freshwat. Res. 32: 889–895Google Scholar
  30. Ottaway, J. R. (1979). Population ecology of the intertidal anemone Actinia tenebrosa. III. Dynamics and environmental factors. Aust. J. Zool. 27: 273–290Google Scholar
  31. Richardson, B. J. (1982). Geographical distribution of electrophoretically detected protein variation in Australian commercial fishes. II. Jackass morwong, Cheilodactylus macropterus Block and Schneider. Aust. J. mar. Freshwat. Res. 33: 927–931Google Scholar
  32. Richardson, B. J., Baverstock, P. R., Adams, M. L. (1986). Allozyme electrophoresis: a handbook for animal systematics and population studies. Academic Press, Sydney, AustraliaGoogle Scholar
  33. Rossi, L. (1975). Sexual roles in Cereus pedunculatus (Boad). Pubbl. Staz. zool. Napoli 39: 462–470Google Scholar
  34. Ruello, N. V. (1975). Geographical distribution, growth and breeding migration of the eastern Australian king prawn Penaeus plebejus Hess. Aust. J. mar. Freshwat. Res. 26: 343–354Google Scholar
  35. Salini, J. (1987). Genetic variation and population subdivision in the greentail prawn Metapenaeus bennettae (Racek & Dall). Aust. J. mar. Freshwat. Res. 38: 339–349Google Scholar
  36. Schick, J. M., Hoffmann, R. J., Lamb, A. N. (1979). Asexual reproduction, population structure, and genotype-environment interactions in sea anemones. Am. Zool. 19: 699–713Google Scholar
  37. Sebens, K. P. (1983). Population dynamics and habitat suitability of the intertidal sea anemones Anthopleura eleganitissima and Anthopleura xanthogrammica. Ecol. Monogr 53: 405–433Google Scholar
  38. Sebens, K. P. (1984). Agonistic behaviour in the intertidal sea anemone Anthopleura xanthogrammica. Biol. Bull. mar. biol. Lab., Woods Hole 166: 457–472Google Scholar
  39. Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud. Genet., Austin, Tex. 6: 49–90 (Univ. Tex. Publs No. 7103)Google Scholar
  40. Tracey, M. L., Bellet, N. F., Gravem, C. D. (1975). Excess allozyme homozygosity and breeding population structure in the mussel Mytilus californianus. Mar. Biol. 32: 303–311Google Scholar
  41. Varvio, S. L., Chakraborty, R., Nei, M. (1986). Genetic variation in subdivided populations and conservation genetics. Heredity, Lond. 57: 189–198Google Scholar
  42. Wright, S. (1978). Evolution and the genetics of populations. Vol. 4. Variability within and among natural populations University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Hunt
    • 1
  • D. J. Ayre
    • 1
  1. 1.Biology DepartmentUniversity of WollongongWollongongAustralia

Personalised recommendations