Advertisement

Marine Biology

, Volume 102, Issue 4, pp 529–535 | Cite as

Patterns in the spatial arrangements of polychaetes and bivalves in intertidal sandflats

  • S. F. Thrush
  • J. E. Hewitt
  • R. D. Pridmore
Article

Abstract

Spatial autocorrelation correlograms based on Moran's coefficient were constructed for common polychaetes (Goniada emerita, Heteromastus filiformis, Macroclymenella stewartensis, Boccardia spp. and Magelona? dakini)_and bivalves (Nucula hartvigiana, Soletellina siliqua and Tellina liliana) collected from intertidal sandflats of Manukau Harbour (New Zealand) during October, 1987. Patterns of heterogeneity on a scale smaller than inter-sample distance, homogenous density patches (5 to 30 m radius) and gradients in abundance running through sample sites (9 000 m2) were identified. Patterns could be defined even for species with distributions which, based on the variance: mean ratio test, were not significantly different from random. The possible influence on two of the study sites of sediment disturbances generated by feeding rays is discussed. Identification of spatial patterns is considered an important aspect of the design of surveys and manipulative field experiments.

Keywords

Sample Site Autocorrelation Spatial Pattern Field Experiment Bivalve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Angel, H. H., Angel, M. V. (1967). Distribution pattern analysis in a marine benthic community. Helgoländer wiss. Meersunters. 15: 44–54Google Scholar
  2. Begon, M., Harper, J., Townsend, C. R. (1986). Ecology: individuals, populations and communities. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  3. Cassie, R. M. (1963). Microdistribution of plankton. Oceanogr. mar. Biol. A. Rev. 1: 223–252Google Scholar
  4. Cliff, A. D., Ord, J. K. (1981). Spatial processes: models and applications. Pion Press, LondonGoogle Scholar
  5. Conover, W. J. (1980). Practical nonparametric statistics. John Wiley & Sons, New YorkGoogle Scholar
  6. Diggle, P. J. (1983). Statistical analysis of spatial point patterns. Academic Press, LondonGoogle Scholar
  7. Folk, R. L. (1968). Petrology of sedimentary rocks. Hemphill's, Austin, TexasGoogle Scholar
  8. Gage, J.D., Coghill, G. C. (1977). Studies on the dispersion patterns of Scottish sea-loch benthos from contiguous core transects. In: Coull, B. C. (ed.) Ecology of marine benthos. University of South Carolina Press, Columbia, p. 319–337Google Scholar
  9. Gage, J. D., Geekie, A. D. (1973). Community structure of the benthos in Scottish sea-lochs. II. Spatial patterns. Mar. Bol. 19: 41–53Google Scholar
  10. Greig-Smith, P. (1983). Quantitative plant ecology. 2nd ed. Butterworths, LondonGoogle Scholar
  11. Jumars, P. A. (1975). Environmental grain and polychaete species diversity in a bathyal benthic community. Mar. Biol. 30: 253–266Google Scholar
  12. Jumars, P. A. (1978). Spatial autocorrelation with RUM (remote underwater manipulator): vertical and horizontal structure of a bathyal benthic community. Deep-Sea Res. 25: 589–604Google Scholar
  13. Jumars, P. A., Thistle, D., Jones, M. L. (1977). Detecting two-dimensional spatial structure in biological data. Oceologia 28: 109–123Google Scholar
  14. Kooijman, S. A. L. M. (1979). The description of point patterns. In: Cormack, R. M., Ord, J. K. (eds.) Spatial and temporal analysis in ecology. International Co-operative Publishing House, Fairland, Maryland, p. 305–332Google Scholar
  15. Legendre, P., Troussellier, M. (1988). Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol. Oceanogr. 33: 1055–1067Google Scholar
  16. Livingston, R. J. (1987). Field sampling in estuaries: the relationship of scale to variability. Estuaries 10: 194–207Google Scholar
  17. Picket, S. T. A., White, P. S. (1985). The ecology of patch disturbance and patch dynamics. Academic Press Inc. OrlandoGoogle Scholar
  18. Pielou, E. C. (1977). Mathematical ecology. 2nd ed. J. Wiley & Sons, New YorkGoogle Scholar
  19. Reise, K. (1979). Spatial configurations generated by motile benthic polychaetes. Helgoländer wiss. Meeresunters. 32: 55–72Google Scholar
  20. Rosenberg, R. (1974). Spatial dispersion of an estuarine benthic faunal community. J. exp. mar. Biol. Ecol. 15: 69–80Google Scholar
  21. SAS Institute Inc. (1987). Statistical software analysis. Version 5.16. SAS Institute Inc., Cary, North CarolinaGoogle Scholar
  22. Sokal, R. R. (1979). Ecological parameters inferred from spatial correlograms. In: Patil, G. P., Rosenweig, M. (eds.) Contemporary quantitative ecology and related ecometrics. International Co-operative Publishing House, Fairland, Maryland, p. 167–196.Google Scholar
  23. Sokal, R. R., Oden, N. L. (1978a). Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229–249Google Scholar
  24. Sokal, R. R., Oden, N. L. (1978b). Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc. 10: 199–225Google Scholar
  25. Taylor, L. R. (1984). Assessing and interpreting the spatial distributions of insect populations. A. Rev. Ent. 29: 321–357Google Scholar
  26. Upton, J. G. J., Fingleton, B. (1985). Spatial data analysis by example. Vol. 1. Point patterns and quantitative date. John Wiley & Sons, ChichesterGoogle Scholar
  27. Bolckaert, F. (1987). Spatial pattern of soft-bottom Polychaeta of Nova Scotia, Canada. Mar. Biol. 93: 627–639Google Scholar
  28. Woodin, S. A. (1983). Biotic interactions in recent marine sedimentary environments. In: Tevesz, M. J. S., McCall, P. L. (eds.) Biotic interactions in recent and fossil benthic communities. Plenum Press, New York, p. 3–38Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. F. Thrush
    • 1
  • J. E. Hewitt
    • 1
  • R. D. Pridmore
    • 1
  1. 1.Department of Scientific and Industrial ResearchWater Quality CentreHamiltonNew Zealand

Personalised recommendations