Marine Biology

, Volume 102, Issue 4, pp 461–472 | Cite as

Resident mysids: community structure, abundance and small-scale distributions in a coral reef lagoon

  • J. H. Carleton
  • W. M. Hamner


Seasonal and diel variations in community structure and abundance of coral-reef lagoon mysids were examined at Davies Reef in the central region of the Great Barrier Reef (GBR) between June 1980 and May 1981. Twenty-five mysid species belonging to three subfamilies of the family Mysidae were captured during the study, with six new records for the GBR. The epibenthic mysid community differed from that in the overlying water, was faunistically uniform, but formed characteristic seasonal and diel groupings. The dominant epibenthic species were Erythrops sp., Anisomysis pelewensis, Doxomysis littoralis, A. laticauda, Prionomysis stenolepis, A. lamellicauda, and A. australis, five of which formed schools. Total mysid abundances ranged between 110 and 790 m-3 with peak abundance in October. Schooling species occurred at local densities of up to 500 000 m-3. Mysids were absent from shallow and midwater depths during the day, but were distributed throughout all depths at night with peak abundances in mid-water and deep layers. The dominant species in the water column at night were Pseudanchialina inermis, A. laticauda and Gastrosaccus indicus, in descending order of abundance. Lagoonal mysids contribute little to the food of sessile reef planktivores, as all but three species remain concentrated near or on the lagoon floor both day and night. The contribution of resident lagoon mysids to reef trophodynamics is probably through remineralization of lagoon detritus. Given the vast reef areas comprised of sandy lagoons, the large populations and relatively large size of lagoon mysids, this trophodynamic role may be of considerable importance.


Coral Reef Overlie Water Great Barrier Reef Peak Abundance Reef Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abel, D. J., Williams, W. T., Williams, D. McB. (1985). A fast classificatory algorithm for large problems under the Bray-Curtis measure. J. exp. mar Biol. Ecol. 89: 237–245Google Scholar
  2. Alldredge, A. L., King, J. M. (1977). Distribution, abundance and substrate preferences of demersal reef zooplankton at Lizard Island Lagoon, Great Barrier Reef. Mar. Biol. 41: 317–333Google Scholar
  3. Alldredge, A. L., King, J. M. (1980). Effects of moonlight on the vertical migration patterns of demersal zooplankton. J. exp. mar. Biol. Ecol. 44: 133–156Google Scholar
  4. Alldredge, A. L., King, J. M. (1985). The distance demersal zooplankton migrate above the benthos: implications for predation. Mar. Biol. 84: 253–260Google Scholar
  5. Băcescu, M. (1975). Contributions to the knowledge of the mysid (Crustacea) from the Tanzanian waters. Univ. Sci. J. Univ., Dar es Salaam 1: 39–61Google Scholar
  6. Belbin, L. (1987). PATN: pattern analysis package. Reference manual. Part 1. CSIRO Division of Wildlife and Rangelands Research. MelbourneGoogle Scholar
  7. Birkeland, C. (1984). A contrast in methodologies between surveying and testing. UNESCO Rep. mar. Sci. 21: 11–26Google Scholar
  8. Birkett, L., McIntyre, A. D. (1971). Treatment and sorting of samples. In: Holme, N. A., McIntyre, A. D. (eds.) Methods for the study of marine benthos. Blackwell, Oxford, p. 156–168Google Scholar
  9. Bray, J. R., Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349Google Scholar
  10. Burr, E. J. (1970). Cluster sorting with mixed character types. II. Fusion strategies. Aust. Comput. J. 1: 98–103Google Scholar
  11. Carleton, J. H. (1986). The mysid community: distribution, abundance and composition, Davies Reef lagoon, Great Barrier Reef. MSc. Thesis, James Cook University of North QueenslandGoogle Scholar
  12. Carleton, J. H., Hamner, W. M. (1987). A diver operated device for the capture of mobile epibenthic organisms. Limnol. Oceanogr. 32: 503–510Google Scholar
  13. Clutter, R. I., Anraku, M. (1968). Avoidance of samplers. Monogr. oceanogr. Methodol. (UNESCO) 2: 57–76Google Scholar
  14. Dadswell, M. J. (1975). Some notes on shoaling behaviour and growth of Mysis gaspensis (Mysidacea) in a small Newfoundland estuary. Can. J. Zool. 53: 374–377Google Scholar
  15. Emery, A. R. (1968). Preliminary observations on coral reef plankton. Limnol. Oceanogr. 13: 293–303Google Scholar
  16. Fraser, J. H. (1968). Standardization of zooplankton sampling methods at sea. Monogr. oceanogr. Methodol. (UNESCO) 2: 145–169Google Scholar
  17. Gerber, R., Marshall, N. (1974). Reef pseudoplankton in lagoon trophic systems. Proc. 2nd int. Symp. coral Reefs 2: 105–107 [Cameron, A. M. et al. (eds.) Great Barrier Reef Committee, Brisbane]Google Scholar
  18. Goodbody, I. (1965). Continuous breeding in populations of two tropical crustaceans, Mysidium columbiae (Zimmer) and Emerita portoricensis (Schmidt). Ecology 46: 195–197Google Scholar
  19. Gottfried, M., Roman, M. R. (1983). Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Mar. Biol. 72: 211–218Google Scholar
  20. Grimm, G. R., Clayshulte, R. N. (1981). Demersal plankton from Western Shoals, Apra Harbor, Guam (Abstract). Proc. 4th int. Symp. coral Reefs 2: p. 454. [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]Google Scholar
  21. Hamner, W. M., Carleton, J. H. (1979). Copepod swarms: attributes and role in coral reef ecosystems. Limnol. Oceanogr. 24: 1–14Google Scholar
  22. Hatcher, B. G. (1983). The role of detritus in the metabolism and secondary production of coral reef ecosystems. In: Baker, J. T. et al. (eds.) Proceedings of the Inaugural Great Barrier Reef Conference; August 29–September 2 1983, Townsville, Australia. James Cook University Press, Townsville, p. 317–325Google Scholar
  23. Hobson, B. G., Chess, J. R. (1979). Zooplankters that emerge from the lagoon floor at night at Kure and Midway Atolls, Hawaii. Fish. Bull. U.S. 77: 275–280Google Scholar
  24. Ikeda, T., Carleton, J. H., Mitchell, A. W., Dixon, P. (1982). Ammonia and phosphate excretion by zooplankton from the inshore waters of the Great Barrier Reef. II. Their in situ contributions to nutrient regeneration. Aust. J. mar. Freshwat. Res. 33: 683–698Google Scholar
  25. Jacoby, C. A., Greenwood, J. G. (1988). Spatial, temporal, and behavioral patterns in emergence of zooplankton in the lagoon of Heron Reef, Great Barrier Reef, Australia. Mar. Biol. 97: 309–328Google Scholar
  26. Jonson, M. W. (1949). Zooplankton as an index of water exchange between Bikini Lagoon and the open sea. Trans. Am. geophys. Un. 30: 238–244Google Scholar
  27. Johnson, M. W. (1954). Plankton of northern Marshall Islands: Bikini and nearby atolls, Marshall Islands. Prof. Pap. U.S. geol. Surv. 260-F: 300–314Google Scholar
  28. Mauchline, J. (1980). The biology of mysids. Adv. mar. Biol. 18: 1–369Google Scholar
  29. McWilliam, P. S., Sale, P. F., Anderson, D. T. (1981). Seasonal changes in resident zooplankton sampled by emergence traps in One Tree Lagoon, Great Barrier Reef. J. exp. mar. Biol. Ecol. 52: 185–203Google Scholar
  30. Morgan, M. D., Beeton, A. M. (1978). Life history and abundance of Mysis relicta in Lake Michigan. J. Fish. Res. Bd Can. 35: 1165–1170Google Scholar
  31. Motoda, S. (1940). Comparison of the condition of water in bay, lagoon and open sea in Palao. Palao trop. biol. Stn Stud. 2: 41–48Google Scholar
  32. Mullin, M. M., Roman, M. R. (1986). In situ feeding of a schooling mysid, Anisomysis sp., on Davies Reef-MECOR 4. Bull. mar. Sci. 39: 623–629Google Scholar
  33. Ohlhorst, S. L. (1982). Diel migration patterns of demersal reef zooplankton. J. exp. mar. Biol. Ecol. 60: 1–15Google Scholar
  34. Pielou, E. C. (1969). An introduction to mathematical ecology John Wiley & Sons, Inc., New YorkGoogle Scholar
  35. Pielou, E. C. (1975). Ecological diversity. John Wiley & Sons, Inc., New YorkGoogle Scholar
  36. Porter, J. W. (1974). Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. Proc. 2nd int. Symp. coral Reefs 2: 111–115. [Cameron, A. M. et al. (eds.) Great Barrier Reef Committee, Brisbane]Google Scholar
  37. Porter, J. W., Porter, K. G. (1977). Quantitative sampling of demersal plankton migrating from different coral reef substrates. Limnol. Oceanogr. 22: 553–556Google Scholar
  38. Porter, J. W., Porter, K. G., Batac-Catalan, Z. (1977). Quantitative sampling of Indo-Pacific demersal reef plankton. Proc. 3rd int. Symp. coral Reefs 2: 105–112. [Taylor, D. L. (eds.) Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Fla]Google Scholar
  39. Renon, J. P. (1977). Zooplancton du lagon de l'atoll de Takapoto (Polynésie Française). Annls Inst. océanogr., Paris (N.S.) 53: 217–236Google Scholar
  40. Renon, J. P. (1978). Un cycle annuel du zooplancton dans un lagon de Tahiti. Cah. O.R.S.T.O.M. Sér. Océanogr. 16: 63–88Google Scholar
  41. Robichaux, D. M., Cohen, A. C., Reaka, M. L., Allen, D. (1981). Experiments with zooplankton on coral reefs or, will the real demersal plankton please come up? Pubbl. Staz. zool. Napoli (I. Mar. Ecol.) 2: 77–94Google Scholar
  42. Russel, F. S. (1934). The zooplankton. III. A comparison of the abundance of zooplankton in the Barrier Reef Lagoon with that of some regions in northern European waters. Scient. Rep. Gt Barrier Reef Exped. 2: 159–201Google Scholar
  43. Sale, P. F., McWilliam, P. S., Anderson, D. T. (1976). Composition of the near-reef zooplankton at Heron Reef, Great Barrier Reef. Mar. Biol. 34: 59–66Google Scholar
  44. Sale, P. F., McWilliam, P. S., Anderson, D. T. (1978). Faunal relationships among the near-reef zooplankton at three locations on Heron Reef, Great Barrier Reef, and seasonal changes in this fauna. Mar. Biol. 49: 133–145Google Scholar
  45. Sandland, R. L., Young, P. C. (1979a). Probabilistic tests and stopping rules associated with hierarchical classification techniques. Aust. J. Ecol. 4: 399–406Google Scholar
  46. Sandland, R. L., Young, P. C. (1979b). Tables of probabilities associated with the fission of replicate samples in classification. Rep. Div. Fish. Oceanogr. C.S.I.R.O. Aust. 108: 1–21Google Scholar
  47. Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San FranciscoGoogle Scholar
  48. Tattersall, W. M. (1936). Mysidacea and Euphausiacea. Scient. Rep. Gt Barrier Reef Exped 2: 143–176Google Scholar
  49. Tranter, D. J., George, J. (1972). Zooplankton abundance at Kavaratti and Kalpeni Atolls in the Laccadaves. Proc. 1st int. Symp. coral reefs. 1: 239–256. [Mukundan, C., Gopinadha Pillai, C. S. (eds.) Marine Biological Association of India, Cochin]Google Scholar
  50. Tudhope, A. W. (1983). Processes of lagoonal sedimentation and patch reef development, Davies Reef, Great Barrier Reef of Australia. Ph. D. thesis, University of EdinburghGoogle Scholar
  51. Underwood, A. J. (1981). Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. mar. Biol. A. Rev. 19: 513–605Google Scholar
  52. Van Guelpen, L., Markle, D. F., Duggan, D. J. (1982). An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques. J. Cons. int. Explor. Mer 40: 226–236Google Scholar
  53. Walter, C., Pasamonte, J. N., Talaue, L. L. (1981). A preliminary quantitative study on emergence of reef associated zooplankton from a Philippine coral reef. Proc. 4th int. Symp. coral Reefs 2: 443–452. [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. H. Carleton
    • 1
  • W. M. Hamner
    • 1
  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia

Personalised recommendations