Advertisement

Marine Biology

, Volume 102, Issue 4, pp 431–437 | Cite as

Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans

  • M. I. Venkatesan
  • C. A. Santiago
Article

Abstract

The role of marine mammals in the biogeochemical flux of oceanic carbon is largely unknown. Capillary gas chromatography and gas chromatography/mass spectrometry after organic solvent extraction and compound class separation of feces from cetaceans (toothed and baleen whales), pinnipeds and penguins (collected in 1987 from Monterey Bay, off the coast of California or from Sea World, San Diego, California, USA) indicate that the unusual sterol profile in the Antarctic sediments, with epicoprostanol predominating over its isomer, coprostanol, originates from baleen whales (blue and fin whales). The sterol distribution in feces from ballen whales is different from that of other animals studied here and also from anthropogenic sewage (collected in 1987 from wastewater outfalls off the coast of southern California, USA). The data from the current investigation thus provide the first geochemical evidence of a recognizable native mammalian contribution to the flux of carbon in the ocean. The results also illustrate how the marine mammalian contribution can be delineated from human impact around many coastal regions of the globe including Antarctic research stations. The relative distribution of the two isomers in the sediments deposited during preanthropogenic periods could help evaluate the historical migratory routes and habitats of cetaceans, pinnipeds and penguins. The presence of coprostanone in marine mammalian feces, which has also previously been detected in human feces, implies that at least part of the conversion of cholesterol into coprostanol in the intestine of marine mammals occurs via the formation of an intermediate, Δ4-cholesten-3-one.

Keywords

Marine Mammal Coprostanol Oceanic Carbon Organic Solvent Extraction Baleen Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, L. G., Domning, D. P., Ray, C. E. (1985). Status of studies on fossil marine mammals. Mar. Mammal Sci. 1: 15–53Google Scholar
  2. Björkhem, I., Gustafsson, J.-A. (1971). Mechanism of microbial transformation of cholesterol into coprostanol. Eur. J. Biochem. 21: 428–432Google Scholar
  3. Brown, S. G., Brownell, Jr., R. L., Erickson, A. W., Hofmann, R., J., Llano, G. A., Mackintosh, N. A. (1974). Antarctic mammals. Antarctic Map Folio Ser. 18Google Scholar
  4. Budzikiewicz, H., Djerassi, C. (1962). Mass spectrometry in structural and stereochemical problems. I. Steroid ketones. J. Am. chem. Soc. 84: 1430–1439Google Scholar
  5. Eneroth, P., Hellström, K., Ryhage, R. (1964). Identification and quantification of neutral fecal steroids by gas-liquid chromatography and mass spectrometry: studies of human excretion during two dietary regimens. J. Lipid Res 5: 245–262Google Scholar
  6. Eyssen, H. J., Parmentier, G. G., Compernolle, F. C., De Pauw, G., Piessens-Denef, M. (1973). Biohydrogenation of sterols by Eubacterium ATCC 21, 408-Nova species. Eur. J. Biochem. 36: 411–421Google Scholar
  7. Férézou, J., Gouffier, E., Coste, T., Chevallier, F. (1978). Daily elimination of fecal neutral sterols by humans. Digestion, Basel 18: 201–212Google Scholar
  8. Gaskell, S. J., G. Eglinton, G. (1975). Rapid hydrogenation of sterols in a contemporary lacustrine sediment. Nature, Lond. 254: 209–211Google Scholar
  9. Hatcher, P. G., McGillivary, P. A. (1979). Sewage contamination in the New York Bight. Coprostanol as an indicator. Envir. Sci. Technol. 13: 1225–1229Google Scholar
  10. Kellogg, R. (1978). The history of whales — their adaptation to life in the water. Q. Rev. Biol. 3: 29–76Google Scholar
  11. Kleinenberg, S. E. (1958). On the origin of Cetacea. Proc. int. Congr. Zool. 15: 445–447Google Scholar
  12. Laws, R. M. (1977). The significance of vertebrates in the Antarctic marine ecosystem. In: Llano, G. A. (ed.) Adaptations within Antarctic ecosystems. Proceedings of the Third SCAR Symposium on Antarctic Biology. Smithsonian Institution, Washington, D.C., p. 411–438Google Scholar
  13. Laws, R. M. (1984). Seals. In: Laws, R. M. (ed.) Antarctic ecology. Vol. 2. Academic Press, London, p. 621–715Google Scholar
  14. Lee, C., Farrington, J. W., Gagosian, R. B. (1979). Sterol geochemistry of sediments from the western North Atlantic Ocean and adjacent coastal areas. Geochim. cosmochim. Acta 43: 35–46Google Scholar
  15. Martin, W. J., Ravi Subbiah, M. T., Kottke, B. A., Birk, C. C., Naylor, M. C. (1973). Nature of fecal sterols and intestinal bacterial flora. Lipids. 8: 208–215Google Scholar
  16. McLafferty, F. W. (1973). Interpretaion of mass specra. 2nd ed. W. A. Benjamin, Inc., Reading, MassachusettsGoogle Scholar
  17. Murtaugh, J. J., Bunch, R. L. (1967). Sterol as a measure of fecal pollution. J. Wat. Pollut. Control Fed. 39: 404–409Google Scholar
  18. Nishimura, M. (1982). 5β-isomers of stanols and stanones as potential markers of sedimentary organic quality and depositional paleoenvironments. Geochim. cosmochim. Acta 46: 423–432Google Scholar
  19. Nishiwaki, M. (1972). General biology. In: Ridgway, S. H. (ed.) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield, IllinoisGoogle Scholar
  20. Ogura, N., Ichikawa, Y. (1983). Coprostanol in sediments of Tokyo Bay. Chikyukagaku (Geochemistry) 17: 76–81Google Scholar
  21. Parmentier, G., Eyssen, H. (1974) Mechanism of biohydrogenation of cholesterol to coprostanol by Eubacterium ATCC 21408. Biochim. biophys. Acta 348: 279–284Google Scholar
  22. Rosenfeld, R. S. (1964). The isolation of coprostanol from sterol esters of human feces. Archs Biochem. Biophys. 108: 384–385Google Scholar
  23. Rosenfeld, R. S., Gallagher, T. F. (1964). The biotransformation of cholesterol to coprostanol. Steroids (Oakland, Calif.) 4: 515–520Google Scholar
  24. Rosenfeld, R. S., Hellman, L., Gallagher, T. F. (1956). The transformation of cholesterol-3d to coprostanol-d. Location of deuterium in coprostanol. J. biol. Chem. 222: 321–323Google Scholar
  25. Rosenheim, O. Webster, T. A. (1943). The mechanism of coprosterol formation in vivo. I. Cholestenone as an intermediate. Biochem. J. 37: 513–514Google Scholar
  26. Smith, R. C., Dustan, P., Au, D., Baker, K. S., Dunlap, E. A. (1986). Distribution of cetaceans and sea-surface chlorophyll concentrations in the California Current. Mar. Biol. 91: 385–402Google Scholar
  27. Tabak, H. H., Bloomhuff, R. N., Bunch, R. L. (1972). Coprostanol: a positive tracer of fecal pollution. In: Murray, E. D. (ed.) Developments in industrial microbiology. Vol. 13. Publication of the Society for Industrial Microbiology: American Institute of Biological Sciences, Washington, D.C.Google Scholar
  28. Van Valen, L. (1968). Monophyly or diphyly in the origin of whales. Evolution, Lawrence, Kansas 22: 37–41Google Scholar
  29. Venkatesan, M. I. (1988). Organic geochemistry of marine sediments in Antarctic region: marine lipids in McMurdo Sound. Org. Geochem. 12: 13–27Google Scholar
  30. Venkatesan, M. I., Kaplan, I. R. (1987). The lipid geochemistry of Antarctic marine sediments: Bransfield Strait. Mar. Chem. 21: 347–375Google Scholar
  31. Venkatesan, M. I., Ruth, E., Kaplan, I. R. (1986). Coprostanols in Antarctic marine sediments: a biomarker for marine mammals and not human pollution. Mar. Pollut. Bull. 17: 554–557Google Scholar
  32. Venkatesan, M. I., Ruth, E., Steinberg, S., Kaplan, I. R. (1987). Organic geochemistry of sediments from the continental margin off southern New England, USA-Part II. Lipids. Mar. Chem. 21: 267–299Google Scholar
  33. Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9: 83–99Google Scholar
  34. Walker, R. W., Wun, C. K., Litsky, W. (1982). Coprostanol as an indicator of fecal pollution. CRC critical Rev. envir. Control 12: 91–112Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. I. Venkatesan
    • 1
  • C. A. Santiago
    • 1
  1. 1.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations