Skip to main content
Log in

Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The role of marine mammals in the biogeochemical flux of oceanic carbon is largely unknown. Capillary gas chromatography and gas chromatography/mass spectrometry after organic solvent extraction and compound class separation of feces from cetaceans (toothed and baleen whales), pinnipeds and penguins (collected in 1987 from Monterey Bay, off the coast of California or from Sea World, San Diego, California, USA) indicate that the unusual sterol profile in the Antarctic sediments, with epicoprostanol predominating over its isomer, coprostanol, originates from baleen whales (blue and fin whales). The sterol distribution in feces from ballen whales is different from that of other animals studied here and also from anthropogenic sewage (collected in 1987 from wastewater outfalls off the coast of southern California, USA). The data from the current investigation thus provide the first geochemical evidence of a recognizable native mammalian contribution to the flux of carbon in the ocean. The results also illustrate how the marine mammalian contribution can be delineated from human impact around many coastal regions of the globe including Antarctic research stations. The relative distribution of the two isomers in the sediments deposited during preanthropogenic periods could help evaluate the historical migratory routes and habitats of cetaceans, pinnipeds and penguins. The presence of coprostanone in marine mammalian feces, which has also previously been detected in human feces, implies that at least part of the conversion of cholesterol into coprostanol in the intestine of marine mammals occurs via the formation of an intermediate, Δ 4-cholesten-3-one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Barnes, L. G., Domning, D. P., Ray, C. E. (1985). Status of studies on fossil marine mammals. Mar. Mammal Sci. 1: 15–53

    Google Scholar 

  • Björkhem, I., Gustafsson, J.-A. (1971). Mechanism of microbial transformation of cholesterol into coprostanol. Eur. J. Biochem. 21: 428–432

    Google Scholar 

  • Brown, S. G., Brownell, Jr., R. L., Erickson, A. W., Hofmann, R., J., Llano, G. A., Mackintosh, N. A. (1974). Antarctic mammals. Antarctic Map Folio Ser. 18

  • Budzikiewicz, H., Djerassi, C. (1962). Mass spectrometry in structural and stereochemical problems. I. Steroid ketones. J. Am. chem. Soc. 84: 1430–1439

    Google Scholar 

  • Eneroth, P., Hellström, K., Ryhage, R. (1964). Identification and quantification of neutral fecal steroids by gas-liquid chromatography and mass spectrometry: studies of human excretion during two dietary regimens. J. Lipid Res 5: 245–262

    Google Scholar 

  • Eyssen, H. J., Parmentier, G. G., Compernolle, F. C., De Pauw, G., Piessens-Denef, M. (1973). Biohydrogenation of sterols by Eubacterium ATCC 21, 408-Nova species. Eur. J. Biochem. 36: 411–421

    Google Scholar 

  • Férézou, J., Gouffier, E., Coste, T., Chevallier, F. (1978). Daily elimination of fecal neutral sterols by humans. Digestion, Basel 18: 201–212

    Google Scholar 

  • Gaskell, S. J., G. Eglinton, G. (1975). Rapid hydrogenation of sterols in a contemporary lacustrine sediment. Nature, Lond. 254: 209–211

    Google Scholar 

  • Hatcher, P. G., McGillivary, P. A. (1979). Sewage contamination in the New York Bight. Coprostanol as an indicator. Envir. Sci. Technol. 13: 1225–1229

    Google Scholar 

  • Kellogg, R. (1978). The history of whales — their adaptation to life in the water. Q. Rev. Biol. 3: 29–76

    Google Scholar 

  • Kleinenberg, S. E. (1958). On the origin of Cetacea. Proc. int. Congr. Zool. 15: 445–447

    Google Scholar 

  • Laws, R. M. (1977). The significance of vertebrates in the Antarctic marine ecosystem. In: Llano, G. A. (ed.) Adaptations within Antarctic ecosystems. Proceedings of the Third SCAR Symposium on Antarctic Biology. Smithsonian Institution, Washington, D.C., p. 411–438

    Google Scholar 

  • Laws, R. M. (1984). Seals. In: Laws, R. M. (ed.) Antarctic ecology. Vol. 2. Academic Press, London, p. 621–715

    Google Scholar 

  • Lee, C., Farrington, J. W., Gagosian, R. B. (1979). Sterol geochemistry of sediments from the western North Atlantic Ocean and adjacent coastal areas. Geochim. cosmochim. Acta 43: 35–46

    Google Scholar 

  • Martin, W. J., Ravi Subbiah, M. T., Kottke, B. A., Birk, C. C., Naylor, M. C. (1973). Nature of fecal sterols and intestinal bacterial flora. Lipids. 8: 208–215

    Google Scholar 

  • McLafferty, F. W. (1973). Interpretaion of mass specra. 2nd ed. W. A. Benjamin, Inc., Reading, Massachusetts

    Google Scholar 

  • Murtaugh, J. J., Bunch, R. L. (1967). Sterol as a measure of fecal pollution. J. Wat. Pollut. Control Fed. 39: 404–409

    Google Scholar 

  • Nishimura, M. (1982). 5β-isomers of stanols and stanones as potential markers of sedimentary organic quality and depositional paleoenvironments. Geochim. cosmochim. Acta 46: 423–432

    Google Scholar 

  • Nishiwaki, M. (1972). General biology. In: Ridgway, S. H. (ed.) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield, Illinois

    Google Scholar 

  • Ogura, N., Ichikawa, Y. (1983). Coprostanol in sediments of Tokyo Bay. Chikyukagaku (Geochemistry) 17: 76–81

    Google Scholar 

  • Parmentier, G., Eyssen, H. (1974) Mechanism of biohydrogenation of cholesterol to coprostanol by Eubacterium ATCC 21408. Biochim. biophys. Acta 348: 279–284

    Google Scholar 

  • Rosenfeld, R. S. (1964). The isolation of coprostanol from sterol esters of human feces. Archs Biochem. Biophys. 108: 384–385

    Google Scholar 

  • Rosenfeld, R. S., Gallagher, T. F. (1964). The biotransformation of cholesterol to coprostanol. Steroids (Oakland, Calif.) 4: 515–520

    Google Scholar 

  • Rosenfeld, R. S., Hellman, L., Gallagher, T. F. (1956). The transformation of cholesterol-3d to coprostanol-d. Location of deuterium in coprostanol. J. biol. Chem. 222: 321–323

    Google Scholar 

  • Rosenheim, O. Webster, T. A. (1943). The mechanism of coprosterol formation in vivo. I. Cholestenone as an intermediate. Biochem. J. 37: 513–514

    Google Scholar 

  • Smith, R. C., Dustan, P., Au, D., Baker, K. S., Dunlap, E. A. (1986). Distribution of cetaceans and sea-surface chlorophyll concentrations in the California Current. Mar. Biol. 91: 385–402

    Google Scholar 

  • Tabak, H. H., Bloomhuff, R. N., Bunch, R. L. (1972). Coprostanol: a positive tracer of fecal pollution. In: Murray, E. D. (ed.) Developments in industrial microbiology. Vol. 13. Publication of the Society for Industrial Microbiology: American Institute of Biological Sciences, Washington, D.C.

    Google Scholar 

  • Van Valen, L. (1968). Monophyly or diphyly in the origin of whales. Evolution, Lawrence, Kansas 22: 37–41

    Google Scholar 

  • Venkatesan, M. I. (1988). Organic geochemistry of marine sediments in Antarctic region: marine lipids in McMurdo Sound. Org. Geochem. 12: 13–27

    Google Scholar 

  • Venkatesan, M. I., Kaplan, I. R. (1987). The lipid geochemistry of Antarctic marine sediments: Bransfield Strait. Mar. Chem. 21: 347–375

    Google Scholar 

  • Venkatesan, M. I., Ruth, E., Kaplan, I. R. (1986). Coprostanols in Antarctic marine sediments: a biomarker for marine mammals and not human pollution. Mar. Pollut. Bull. 17: 554–557

    Google Scholar 

  • Venkatesan, M. I., Ruth, E., Steinberg, S., Kaplan, I. R. (1987). Organic geochemistry of sediments from the continental margin off southern New England, USA-Part II. Lipids. Mar. Chem. 21: 267–299

    Google Scholar 

  • Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9: 83–99

    Google Scholar 

  • Walker, R. W., Wun, C. K., Litsky, W. (1982). Coprostanol as an indicator of fecal pollution. CRC critical Rev. envir. Control 12: 91–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Institute of Geophysics and Planetary Physica Contribution No. 3103

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, M.I., Santiago, C.A. Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans. Mar. Biol. 102, 431–437 (1989). https://doi.org/10.1007/BF00438343

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00438343

Keywords

Navigation