Skip to main content
Log in

Anaerobic and aerobic energy metabolism in ovaries of the sea urchin Strongylocentrotus droebachiensis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The gonads of sea urchins undergo large changes in mass during their gametogenic cycle. In addition, they have relatively low aerobic capacities and are poorly perfused by the circulatory system and thus are continually hypoxic or anoxic. The present study of Strongylocentrotus droebachiensis investigates seasonal changes in the relationships among mass of the ovaries, pH and PO2 of the perivisceral coelomic fluid which bathes the ovaries, and partitioning of ovary energy metabolism into its anaerobic and aerobic components. S. droebachiensis were collected at Blue Hill Falls, Maine, USA, from August 1982 to March 1984. We found that from 76 to 92% of the heat dissipated by isolated ovaries of the sea urchin S. droebachiensis derives from anaerobic energy metabolism at partial pressures of oxygen prevailing in vivo. Ovaries from S. droebachiensis have the capacity to produce large amounts of lactate under imposed anoxia, but lactate accounts for only 37% of the total anoxic heat dissipation, which suggests that other end products of anaerobiosis are present. Seasonal changes in pH and PO2 of the perivisceral coelomic fluid can be explained by a complex relationship among changes in temperature, reproductive condition, and anaerobic and aerobic metabolism in the ovaries, gut and body wall. Seasonal changes in the buffering capacity of the perivisceral coelomic fluid must be determined before the effects of respiratory and metabolic acid production on the acid-base status of the coelomic fluid can be fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Aketa, K.: Quantitative analysis of lactic acid and related compounds in sea urchin eggs at the time of fertilization. Embryologia 3, 267–278 (1957)

    Google Scholar 

  • Aketa, K.: Some comparative remarks on the transient change in lactic acid content in sea urchin eggs following fertilization. Expl Cell. Res. 3, 192–194 (1964)

    Google Scholar 

  • Allen, W. V.: Interorgan transport of lipids in the purple sea urchin, Strongylocentrotus purpuratus. Comp. Biochem. Physiol. 47A, 1297–1311 (1974)

    Google Scholar 

  • Belman, B. W. and A. C. Giese: Oxygen consumption of an asteroid and an echinoid from the Antarctic. Biol. Bull. mar. biol. Lab., Woods Hole 146, 157–164 (1974)

    Google Scholar 

  • Curtin, N. A. and R. C. Woledge: Energy changes and muscular contraction. Physiol. Rev. 58, 690–761 (1978)

    Google Scholar 

  • Diehl, W. J., III, L. McEdward, E. Proffitt, V. Rosenberg and J. Lawrence: The response of Luidia clathrata (Echinodermata: Asteroidea) to hypoxia. Comp. Biochem. Physiol. 62A, 669–671 (1979)

    Google Scholar 

  • Ellington, W. R.: Glucose degradation and respiratory metabolism in starfish tissue. Fedn Proc. Fedn Am. Socs exp. Biol. 34, p. 466 (1975)

    Google Scholar 

  • Ellington, W. R.: Intermediary metabolism. In: Echinoderm nutrition, pp 395–415. Ed. by M. Jangoux and J. M. Lawrence. Rotterdam: Balkema 1982

    Google Scholar 

  • Ellington, W. R. and C. S. Hammen: Metabolic compensation to reduced oxygen tensions in the sea cucumber, Sclerodactyla briareus. J. comp. Physiol. 122, 347–358 (1977)

    Google Scholar 

  • Ellington, W. R. and J. M. Lawrence: Malic and lactic dehydrogenase activities and ratios in regular and irregular echinoids. Comp. Biochem. Physiol. 45B, 727–730 (1973)

    Google Scholar 

  • Farmanfarmaian, A.: The respiratory physiology of echinoderms. In: Physiology of Echinodermata, pp 245–265. Ed. by R. A. Boolootian. New York: John Wiley & Sons 1966

    Google Scholar 

  • Giese, A. C.: Physiology of the echinoderm body wall. Thalassia jugosl. 12, 153–163 (1976)

    Google Scholar 

  • Giese, A. C., A. Farmanfarmaian, S. Hilden and P. Doezem: Respiration during the reproductive cycle in the sea urchin, Strongylocentrotus purpuratus. Biol. Bull. mar. biol. Lab., Woods Hole 130, 192–201 (1966)

    Google Scholar 

  • Gnaiger, E.: Direct and indirect calorimetry in the study of animal anoxibiosis. A review and the concept of ATP turnover. In: Thermal analysis, pp 547–552. Ed. by W. Hemminger. Basel: Birkhäuser 1980

    Google Scholar 

  • Gnaiger, E.: Heat dissipation and energetic efficiency in animal anoxibiosis: economy contra power. J. exp. Zool. 228, 471–490 (1983a)

    Google Scholar 

  • Gnaiger, E.: Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In: Polarographic oxygen sensors. pp 337–345. Ed. by E. Gnaiger and H. Forstner. Berlin: Springer-Verlag 1983b

    Google Scholar 

  • Greenwood, P. J.: Growth, respiration and tentative energy budgets for two populations of the sea urchin Parechinus angulosus (Leske). Estuar. cstl mar. Sci. 10, 347–367 (1980)

    Google Scholar 

  • Hansen, C. A. and B. D. Sidell: Atlantic hagfish cardiac muscle: metabolic basis of tolerance to anoxia. Am. J. Physiol. 244, R356-R362 (1983)

    Google Scholar 

  • Holland, L. Z., A. C. Giese and J. H. Phillips: Studies of the perivisceral coelomic fluid protein concentration during seasonal and nutritional changes in the purple sea urchin. Comp. Biochem. Physiol. 21, 361–371 (1967)

    Google Scholar 

  • Itzhaki, R. F. and D. M. Gill: A micro-biuret method for estimating proteins. Analyt. Biochem. 9, 401–410 (1964)

    Google Scholar 

  • Lamprecht, W., P. Stein, F. Heniz and H. Weisser: Creatine phosphate. In: Methods of enzymatic analysis, pp 1777–1785. Ed. by H. U. Bergmeyer. New York: Academic Press 1974

    Google Scholar 

  • Larson, B. R., R. L. Vadas and M. Keser: Feeding and nutritional ecology of the sea urchin Strongylocentrotus drobachiensis in Maine, USA. Mar. Biol. 59, 49–62 (1980)

    Google Scholar 

  • Lawrence, J. M. and J. E. M. Lane: The utilization of nutrients by post-metamorphic echinoderms. In: Echinoderm nutrition, pp 331–371. Ed. by M. Jangoux and J. M. Lawrence. Rotterdam: Balkema 1982

    Google Scholar 

  • Livingstone, D. R.: Invertebrate and vertebrate pathways of anaerobic metabolism: evolutionary considerations. J. geol. Soc. Lond. 140, 27–38 (1983)

    Google Scholar 

  • Livingstone, D. R., A. DeZwaan, M. Leopold and E. Marteijn: Studies on the phylogenetic distribution of pyruvate oxidoreductases. Biochem. Syst. Ecol. 11, 415–425 (1983)

    Google Scholar 

  • Lowry, O. H., and J. V. Passonneau: Lactate. In: Methods of enzymatic analysis, pp 1468–1472. Ed. by H. U. Bergmeyer. New York: Academic Press 1974

    Google Scholar 

  • Mattisson, A. G. M.: Cytochrome c, cytochrome oxidase, and respiratory intensity in some types of invertebrate muscles. Ark. Zool. 12, 143–163 (1959)

    Google Scholar 

  • Miller, R. J. and K. H. Mann: Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. Mar. Biol. 18, 99–114 (1973)

    Google Scholar 

  • Minakami, S. and C. H. DeVerdier: Calorimetric study on human erythrocyte glycolysis: heat production in various metabolic conditions. Eur. J. Biochem. 65, 451–460 (1976)

    Google Scholar 

  • Pamatmat, M. M.: Simultaneous direct and indirect calorimetry. In: Polarographic oxygen sensors, pp 167–175. Ed. by E. Gnaiger and H. Forstner. Berlin: Springer-Verlag 1983

    Google Scholar 

  • Parry, G. D.: The influence of the cost of growth on ectotherm metabolism. J. theor. Biol. 101, 453–477 (1983)

    Google Scholar 

  • Perlzweig, W. A. and E. S. G. Barron: Lactic acid and carbohydrate in sea urchin eggs under aerobic and anaerobic conditions. J. biol. Chem. 79, 19–26 (1928)

    Google Scholar 

  • Reeves, R. B.: An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir. Physiol. 14, 219–236 (1972)

    Google Scholar 

  • Reeves, R. B. and H. Rahn: Patterns in vertebrate acid-base regulation: a comparative approach. In: Evolution of the respiratory processes, pp 225–252. Ed. by S. C. Wood and C. Lenfant. New York: Dekker 1979

    Google Scholar 

  • Rothchild, Lord: Acid production after fertilization of sea urchin eggs. J. exp. Biol. 35, 843–849 (1958)

    Google Scholar 

  • Sarch, M. N.: Die Pufferung der Körperflüssigkeiten bei Echinodermen. Z. vergl. Physiol. 14, 525–545 (1931)

    Google Scholar 

  • Shick, J. M.: Physiological and behavioral responses to hypoxia and hydrogen sulfide in the infaunal asteroid Ctenodiscus crispatus. Mar. Biol. Lett. 2, 225–236 (1981)

    Google Scholar 

  • Shick, J. M.: Respiratory gas exchange in the echinoderms. In: Echinoderm studies, Vol. 1. pp 67–110. Ed. by M. Jangoux and J. M. Lawrence. Rotterdam: Balkema 1983

    Google Scholar 

  • Shick, J. M., A. DeZwaan, and A. M. T. DeBont: Anoxic metabolic rate in the mussel Mytilus edulis L. estimated by simultaneous direct calorimetry and biochemical analysis. Physiol. Zoöl. 56, 56–63 (1983)

    Google Scholar 

  • Somero, G. N.: pH-temperature interactions on proteins: principles of optimal pH and buffer system design. Mar. Biol. Lett. 2, 163–178 (1981)

    Google Scholar 

  • Theede, H., A. Ponat, K. Hiroki and C. Schlieper: Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Mar. Biol. 2, 325–337 (1969)

    Google Scholar 

  • Webster, S. K. and A. C. Giese: Oxygen consumption of the purple sea urchin with special reference to the reproductive cycle. Biol. Bull. mar. biol. Lab., Woods Hole 148, 165–180 (1975)

    Google Scholar 

  • White, F. N. and G. N. Somero: Acid-base regulation and phospholipid adaptation to temperature: time courses and physiological significance of modifying the milieu for protein function. Physiol. Rev. 62, 40–90 (1982)

    Google Scholar 

  • Zammit, V. A. and E. A. Newsholme: The maximum activities of hexokinase, phosphorylase, phosphofructokinase, Glycerol phosphate dehydrogenase, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphate kinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscle from marine invertebrates. Biochem. J. 160, 447–462 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bookbinder, L.H., Shick, J.M. Anaerobic and aerobic energy metabolism in ovaries of the sea urchin Strongylocentrotus droebachiensis . Marine Biology 93, 103–110 (1986). https://doi.org/10.1007/BF00428659

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428659

Keywords

Navigation