Skip to main content
Log in

Studies on differential fitness of PGI genotypes with regard to temperature in Gammarus insensibilis (Crustacea: Amphipoda)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This paper deals with an experimental study of survival, combined with estimates of biochemical activity, of different genotypes at the PGI (phosphoglucose isomerase) locus in Gammarus insensibilis, in relation to temperature. Samples were collected in the lagoon of Venice during 1987. No mortality occurred at 10°C whereas at 27°C, where mortality reached the value of 50%, heterozygotes exhibited significantly higher survival than homozygotes. Experiments conducted in order to evaluate the PGI biochemical activity of homo- and heterozygote genotypes at three different temperatures (4°, 20° and 37°C) showed in all genotypes an increased activity from 4° to 20°C and a fall of activity from 20° to 37°C. Heterozygotes exhibited higher activity at all temperatures tested. The difference between homo- and heterozygotes became more obvious at 37°C. Our results suggest that in G. insensibilis the PGI locus, as already shown in other organisms, may be subject to selection and that the heterozygous genotypes possess superior fitness. The biochemical bases of the observed differences between genotypes are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bisol, P. M. (1976). Polimorfismi enzimatici ed affinità tassonomiche in Tisbe (Copepoda, Harpacticoida). Atti Accad. naz. Lincei Rc. 60: 864–870

    Google Scholar 

  • Bisol, P. M., Patarnello, T. Battaglia, B. (1987). Variabilità genetica in Anfipodi del genere Gammarus di ambienti salmastri. Accad. naz. Lincei Rc. 80: 593–601

    Google Scholar 

  • Brunetti, R., Marin, M. Beghi, L., Bressan, M. (1983). Study of pollution in the Venetian lagoon's lower basin during the period 1974–1981. Riv. Idrobiol. 22: 27–58

    Google Scholar 

  • Bulnheim, H. P., Scholl, A. (1986). Genetic differentiation between populations of Talitrus saltator and Talorchestia deshayesii (Crustacea: Amphipoda) from costal areas of the north-western European continent. Mar. Biol. 92: 525–536

    Google Scholar 

  • Burton, R. S., Feldman, M. W. (1983). Physiological effects of an allozyme polymorphism: Glutamate-Pyruvate Transaminase and response to hyperosmotic stress in the Copepod Tigriopus californicus. Biochem. Genet. 21: 239–251

    Google Scholar 

  • DiMichele, L., Powers, D. A. (1982): Physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science, N.Y. 216: 1014–1016

    Google Scholar 

  • Fevolden, S. E. (1988). Biochemical genetics and population structure of Euphausia superba. Comp. Biochem. Physiol. 90(B): 507–513

    Google Scholar 

  • Guderley, H., Hochachka, P. W. (1977). Gluconeogenic control adaptations in Cancer magister: hypodermal pyruvate kinase, an enzyme with high- and low-affinity states. Archs Biochem. Biophys. 182: 465–477

    Google Scholar 

  • Hall, J. G. (1985). Temperature-related kinetic differentiation of Glucosephosphate Isomerase alleloenzymes isolated from the blue mussel, Mytilus edulis. Biochem. Genet. 23: 705–728

    Google Scholar 

  • Harris, H., Hopkinson, D. A. (1976 and supplement 1977). Handbook of enzyme electrophoresis in human genetics. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Hilbish, T. J., Koehn, R. K. (1985). The physiological basis of natural selection at the LAP locus. Evolution 39(6): 1302–1317

    Google Scholar 

  • Hoffmann, R. J. (1981). Evolutionary genetics of Metridium senile. I. Kinetic differences in Phosphoglucose Isomerase allozymes. Biochem. Genet. 19: 129–154

    Google Scholar 

  • Koehn, R. K. (1978). Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics. In: Brussard, P. F. (ed.) Ecological genetics: the interface. Springer-Verlag, New York, p. 51–72

    Google Scholar 

  • Koehn, R. K., Bayne, B. L. (In press). Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc.

  • Koehn, R. K., Immerman, F. W. (1981). Biochemical studies of Aminopeptidase polymorphism in Mytilus edulis. I. Dependence of enzyme activity on season, tissue and genotype. Biochem. Genet. 19: 1115–1142

    Google Scholar 

  • Kühl, S., Schneppenheim, R. (1986). Electrophoretic investigation of genetic variation in two krill species Euphausia superba and E. crystallorophias (Euphausiidae). Polar Biol. 6: 17–23

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • McDonald, J. H. (1987). Repeated geographic variation at three enzyme loci in the Amphipod Platorchestia platensis. Evolution 41(2): 438–441

    Google Scholar 

  • Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Nevo, E., Beiles, A., Ben-Shlomo, R. (1984). The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In: Mani G. S. (ed.) Evolutionary dynamics of genetic diversity. Lecture Notes Biomaths 53: 12–213

  • Nevo, E., Lavie, B., Ben-Shlomo, R. (1983). Selection of allelic isozyme polymorphisms in marine organisms: pattern, theory and application. In: Isozymes: Current topics in biological and medical research. Vol. 10: Genetics and Evolution: 69–92

  • Nevo, E., Schimony, T., Libni, M. (1977). Thermal selection of allozyme polymorphisms in barnacles. Nature, Lond 267: 699–701

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. J., Johnson, W. E., Gentry, J. B. (1971). IV. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse Peromiscus polionotus. Studies in genetics VI. Univ. Texas Publ. 7103: 49–90

    Google Scholar 

  • Shihab, A. F., Heath, D. J. (1987). Components of fitness and the PGI polymorphism in the freshwater isopod Asellus aquaticus (L.) 2. Zygotic selection. Heredity, Lond 58: 289–295

    Google Scholar 

  • Siegismund, H. R. (1985a). Genetic studies of Gammarus. III: Inheritance of electrophoretic variants of the enzymes mannosephosphate isomerase and glucosephosphate isomerase in Gammarus oceanicus. Hereditas 103: 23–31

    Google Scholar 

  • Siegismund, H. R. (1985b). Genetic studies of Gammarus. II. Geographical variation at polymorphic enzyme loci in Gammarus salinus and Gammarus oceanicus. Hereditas 102: 15–23

    Google Scholar 

  • Watt, M. (1983). Adaptation at specific loci. II. Demographic and biochemical elements in the maintenance of the Colias PGI polymorphism. Genetics 103: 691–724

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Sarà, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patarnello, T., Bisol, P.M. & Battaglia, B. Studies on differential fitness of PGI genotypes with regard to temperature in Gammarus insensibilis (Crustacea: Amphipoda). Marine Biology 102, 355–359 (1989). https://doi.org/10.1007/BF00428487

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428487

Keywords

Navigation