Skip to main content
Log in

Photosynthetic carbon reduction: high rates in the sea-surface microlayer

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The ocean is a significant sink for increasing anthropogenic carbon dioxide emissions. The sea-surface microlayer (upper 50 μm layer) serves as the primary point for exchange of materials, including carbon dioxide, between the atmosphere and hydrosphere. We determined microalgal standing stocks and activities in microlayer and subsurface water from areas with (S) and without (NS) visible natural surface slicks in Sequim Bay, Washington, USA, in July 1984. Enrichment ratios (microlayer concentration: subsurface bulkwater concentration) were: phytoneuston population abundance, 37 (NS) to 154 (S); total chlorophylls, 1.3 (NS) to 18 (S); particulate carbon fixation, 2 (NS) to 52 (S); and dissolved carbon excretion, 17 (NS) to 63 (S). Photoinhibition of 36 to 89% occurred in phytoneuston under natural summer light-intensities. Slick samples had greater standing stocks and rates of primary production than non-slick samples. The species composition of phytoneuston was distinctly different from that of phytoplankton. These results suggest that phytoneuston form a unique community. Although carbon fixation in summer was less per individual in phytoneuston than in phytoplankton, because of their overall abundance at the air-sea interface, phytoneuston may play an important role in the transfer of CO2 from the atmosphere into ocean surface-water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adam, N. K. (1937). A rapid method for determining the lowering of tension of exposed water surfaces with some observations on the surface tension of the sea and inland waters. Proc. R. Soc. (Ser. B) 122: 134–139

    Google Scholar 

  • Albright, L. J. (1980). Photosynthetic activities of phytoneuston and phytoplankton. Can. J. Microbiol. 26: 389–392

    Google Scholar 

  • Andrews, P., Williams, P. J. (1971). Heterotrophic utilization of organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in sea water. J. mar. biol. Ass. U.K. 51: 111–125

    Google Scholar 

  • Baier, R. E., Goupil, D. W., Perlmutter, S., King, R. (1974). Dominant chemical composition of sea-surface films, natural slicks, and foams. J. Rech. Atmos. 8: 571–600

    Google Scholar 

  • Bell, C. R., Albright, L. J. (1982). Bacteriological investigation of the neuston and plankton in the Frazer River estuary, British Columbia. Estuar., cstl Shelf Sci. 15: 385–394

    Google Scholar 

  • Bezdek, H. F., Carlucci, A. F. (1972). Surface concentrations of marine bacteria. Limnol. Oceanogr. 17: 566–569

    Google Scholar 

  • Bowes, G., Berry, J. A. (1972). The effect of oxygen on photosynthesis and glycolate excretion in Chlamydomonas reinhardtii. Yb. Carnegie Instn Wash. 71: 148–158

    Google Scholar 

  • Brockmann, U. H., Kattner, G. Hentzschel, G., Wandschneider, K., Junge, H. D., Hühnerfuß, H. (1976). Naturliche Oberflächenfilme in Seegebiet vor Sylt. Mar. Biol. 36: 135–146

    Google Scholar 

  • Campbell, S. A., Peterson, W. K., Postel, J. R. (1977). Phytoplankton production and standing stock in the main basin of Puget Sound. Final Rep. Municipality Metrop. Seattle p. 132

  • Carlson, D. J. (1982). Phytoplankton in marine surface microlayers. Can. J. Microbiol. 28: 1226–1234

    Google Scholar 

  • Carlucci, A. F., Craven, D. B., Henrichs, S. M. (1985). Surface-film microheterotrophs: amino acid metabolism and solar radiation effects on their activities. Mar. Biol. 85: 13–22

    Google Scholar 

  • De Souza Lima, Y., Chretiennot-Dinet, M. J. (1984). Measurements of biomass and activity of neustonic microorganisms. Estuar., cstl Shelf Sci. 19: 167–180

    Google Scholar 

  • Dietz, A. S., Albright, L. J., Tuominen, T. (1976). Heterotrophic activities of bacterioneuston and bacterioplankton. Can. J. Microbiol. 22: 1699–1709

    Google Scholar 

  • Fogg, G. E. (1966). The extracellular products of algae. Oceanogr. mar. Biol. A. Rev. 4: 195–212

    Google Scholar 

  • Fogg, G. E. (1975). Biochemical pathways in unicellular plants. In: Cooper, J. P. (ed.) Photosynthesis and productivity in different environments. IBP 3. Cambridge University Press, New York, p. 437–457

    Google Scholar 

  • Gallagher, J. L. (1975). The significance of the surface film in salt marsh plankton metabolism. Limnol. Oceanogr. 20: 120–123

    Google Scholar 

  • Garrett, W. D. (1967). The organic chemical composition of the ocean surface. Deep-Sea Res. 14: 221–227

    Google Scholar 

  • Goering, J. J., Menzel, D. W. (1965). The nutrient chemistry of the sea surface. Deep-Sea Res. 12: 839–843

    Google Scholar 

  • Hardy, J. T. (1973). Phytoneuston ecology of a temperate marine lagoon. Limnol. Oceanogr. 18: 525–533

    Google Scholar 

  • Hardy, J. T. (1982). The sea surface microlayer, biology, chemistry, and anthropogenic enrichment. Prog. Oceanogr. 11: 307–328

    Google Scholar 

  • Hardy, J. T., Antrim, L. D. (1986). Refinement of methods for determining the toxicity of emissions from at-sea incinerators: evaluation of a microlayer sampler and toxicity tests at sea. Report on Contract 68-03-3319, WA 36-3 to U.S. Environmental Protection Agency, Washington, D.C.. Battelle Northwest Laboratories, Richland, Washington, D.C.

    Google Scholar 

  • Hardy, J. T., Apts, C. W. (1984). The sea-surface microlayer: phytoneuston productivity and effects of atmospheric particulate matter. Mar. Biol. 82: 293–300

    Google Scholar 

  • Hardy, J. T., Apts, C. W., Crecelius, E. A., Bloom, N. S. (1985). Sea-surface microlayer metal enrichments in an urban and rural bay. Estuar., cstl Shelf Sci. 20: 299–312

    Google Scholar 

  • Hardy, J. T., Valett, M. K. (1981). Natural and microcosm phytoneuston communities of Sequim Bay, Washington. Estuar., cstl Shelf Sci. 12: 3–12

    Google Scholar 

  • Harris, G. P. (1980). The measurement of photosynthesis in natural populations of phytoplankton. In: Morris, I., (ed.). The physiological ecology of phytoplankton. University of California Press Berkeley, Calif. 129–187

    Google Scholar 

  • Hunter, K. A. (1980). Processes affecting particulate trace metals in the sea-surface microlayer. Mar. Chem. 9: 49–70

    Google Scholar 

  • Iverson, R. L., Bittaker, H. F., Myers, V. B. (1976). Loss of radiocarbon in direct scintillation counting of solutions containing 14C-NaHCO3. Limnol. Oceanogr. 21: 756–758

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Jensen, A. (1984). Excretion of organic carbon as a function of nutrient stress. In: Holm-Hansen, O., Bolis, L., Gilles, R. (eds.) Marine phytoplankton and productivity. Springer Verlag, New York, p. 61–72

    Google Scholar 

  • Jokiel, P. L., York, R. H., Jr. (1984). Importance of ultraviolet radiation in photoinhibition of microalgae growth. Limnol. Oceanogr. 29: 192–199

    Google Scholar 

  • Kjelleberg, S., Håkansson, N. (1977). Distribution of lipolytic, proteolytic, and amylolytic marine bacteria between the lipid film and the subsurface water. Mar. Biol. 39: 103–109

    Google Scholar 

  • MacIntyre, F. (1974). The top millimeter of the ocean. Scient. Am. 230: 62–77

    Google Scholar 

  • Mague, T. H., Friberg, E., Hughes, D. J., Morris, I. (1980). Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25: 262–279

    Google Scholar 

  • Marumo, R., Nobuo, T., Nakai, T. (1971). Neustonic bacteria and phytoplankton in surface microlayers of the equatorial waters. Bull. Plankton Soc. Japan 18: 36–41

    Google Scholar 

  • Meyers, P. A., Rice, C. P., Owen, R. M. (1983). Input and removal of natural and pollutant materials in the surface microlayer on Lake Michigan. Envir. Biogeochem. 35: 519–532

    Google Scholar 

  • Nesterova, D. A. (1980). Phytoneuston in the Western Black Sea. Gidrobiol. Zh., Kiev. 16: 26–31

    Google Scholar 

  • Norris, R. E. (1965). Neustonic marine Craspedomonodales (choanoflagellates) from Washington and California. J. Protozool 12: 589–602

    Google Scholar 

  • Paerl, H. W., Bland, P. T., Bowles, N. D., Haibach, M. E. (1985). Adaptation to high light intensity, low-wavelength light among surface blooms of the cyanobacterium Microcystis aeruginosa. Appl. envirl Microbiol. 49: 1046–1052

    Google Scholar 

  • Peterson, B. J. (1980). Aquatic primary productivity and the 14C−CO2 method. A. Rev. Ecol. Syst. 11: 359–385

    Google Scholar 

  • Sharp, J. H. (1977). Excretion of organic matter by marine phytoplankton. Do healthy cells do it? Limnol. Oceanogr. 22: 381–399

    Google Scholar 

  • Sieburth, J. (1971). Distribution and activity of oceanic bacteria. Deep-Sea Res. 18: 1111–1121

    Google Scholar 

  • Sieburth, J., Willis, P. J., Johnson, K. M., Burney, C. M., Lavoie, D. M., Hinga, K. R., Caron, D. A., French, F. W., Johnson, P. W., Davis, P. G. (1976). Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science, N.Y. 194: 1415–1418

    Google Scholar 

  • Smith, R. C., Baker, K. S. (1980). Stratospheric ozone, middle ultraviolet radiation, and carbon-14 measurements of marine productivity. Science, N.Y. 208: 592–593

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can. 167: 1–310

    Google Scholar 

  • Venrick, E. L. (1978). The implications of subsampling (5.1). How many cells to count? Statistical considerations (8.2). In: Sournia, A. (ed.) Phytoplankton manual. UNESCO, Paris, 1–337

    Google Scholar 

  • Williams, P. J., Le B., Yentsch, C. S. (1976). An examination of photosynthetic production, excretion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea. Mar. Biol. 35: 31–40

    Google Scholar 

  • Williams, P. M. (1967). Sea-surface chemistry, organic carbon and inorganic nitrogen and phosphorus in surface films and subsurface waters. Deep-Sea Res. 14: 791–800

    Google Scholar 

  • Williams, P. M., Carlucci, A. F., Henrichs, S. M., Van Vleet, E. S., Horrigan, S. G., Reid, F. M. H., and Robertson, K. J. (1986). Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California. Mar. Chem. 19: 17–98

    Google Scholar 

  • Worrest, R. C., Brooker, D. L., Van Dyke, H. (1980). Result of a primary productivity study as affected by the type of glass in the culture bottles. Limnol. Oceanogr. 25: 360–364

    Google Scholar 

  • Zaitsev, Y. P. (1971). Marine neustonology. [Transl. from Russ.]. National Marine Fisheries Service, NOAA and National Science Foundation. Springfield, Virginia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. C. Schroeder, Pullman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, J.T., Apts, C.W. Photosynthetic carbon reduction: high rates in the sea-surface microlayer. Marine Biology 101, 411–417 (1989). https://doi.org/10.1007/BF00428138

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428138

Keywords

Navigation