Skip to main content
Log in

Comparison of strengthening in wire-drawn or rolled Cu-20% Nb with a dislocation accumulation model

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Strengthening after large deformations by wire-drawing or rolling of Cu, Nb and Cu-20% Nb was compared with the predictions of a proposed modified substructural strengthening model for ductile two-phase alloys. The comparisons indicate that the more extensive and refined model of Funkenbusch and Courtney offers no improvement over the original model of Ashby in predicting the strengthening with increased deformation processing or the dislocation densities necessary to produce the observed strengthening in Cu-20% Nb. Both models can predict the strengthening behaviour of Cu-20% Nb. However, neither model is in accord with the observations that the dislocation density in the Cu matrix is essentially independent of the degree of deformation processing, and that the magnitudes of the dislocation density are much the same in the Cu in Cu-20% Nb and pure Cu identically deformation-processed. In addition, there is no experimental support for the Funkenbusch and Courtney model prediction of an order of magnitude greater dislocation density in the Nb filaments than in the Cu matrix in Cu-20% Nb. It appears that a mechanism that does not require an accumulation of dislocations for strengthening, such as the difficulty in propagating dislocations between closely spaced barriers, is more likely to be responsible for strengthening in Cu-Nb-type deformation-processed composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Spitzig, J. D. Verhoeven, C. L. Trybus and L. S. Chumbley, Scripta Metall. 24 1171.

  2. Idem, ibid. 24 (1990) 1181.

    Article  CAS  Google Scholar 

  3. P. D. Funkenbusch and T. H. Courtney, ibid. 24 (1990) 1175.

    Article  CAS  Google Scholar 

  4. Idem, ibid. 24 (1990) 1183.

    Article  CAS  Google Scholar 

  5. Idem 33 (1985) 913.

    Article  CAS  Google Scholar 

  6. Idem, Metall. Trans. 18 (1987) 1249.

    Article  Google Scholar 

  7. Idem, Scripta Metall. 23 (1989) 1719.

    Article  CAS  Google Scholar 

  8. W. A. Spitzig, Acta Metall. 39 (1991) 1085.

    Article  CAS  Google Scholar 

  9. J. C. M. Li and Y. T. Chou, Metall. Trans. 1 (1970) 1145.

    Article  Google Scholar 

  10. J. C. M. Li, Trans. AIME 227 (1963) 239.

    CAS  Google Scholar 

  11. M. F. Ashby, in “Strengthening Methods in Crystals”, edited by A. Kelly and R. B. Nicholson (Wiley, New York, 1971) p. 137.

    Google Scholar 

  12. J. D. Verhoeven, F. A. Schmidt, E. D. Gibson and W. A. Spitzig, J. Metals 39 (9) (1986) 20.

    Google Scholar 

  13. W. A. Spitzig, A. R. Pelton and F. C. Laabs, Acta Metall. 35 (1987) 2427.

    Article  CAS  Google Scholar 

  14. C. L. Trybus and W. A. Spitzig, ibid. 37 (1989) 1971.

    Article  CAS  Google Scholar 

  15. W. A. Spitzig and P. D. Krotz, Scripta Metall. 21 (1987) 1143.

    Article  CAS  Google Scholar 

  16. W. A. Spitzig, Ames Laboratory, Iowa State University, unpublished research, (1991).

  17. W. A. Spitzig, C. L. Trybus and F. C. Laabs, Mater. Sci. Engng. A145 (1991) 179.

    Article  Google Scholar 

  18. I. Le May, “Principles of Mechanical Metallurgy” (Elsevier, New York, 1981) pp. 124 and 187.

    Google Scholar 

  19. J. Gil Sevillano, P. van Houtte and E. Aernoudt, Prog. Mater. Sci. 25 (1981) 69.

    Article  Google Scholar 

  20. W. F. Hosford Jr, Trans. AIME 230 (1964) 12.

    CAS  Google Scholar 

  21. J. D. Livingston, Acta Metall. 1 (1962) 229.

    Article  Google Scholar 

  22. J. E. Bailey, Philos. Mag. 8 (1963) 223.

    Article  CAS  Google Scholar 

  23. M. R. Staker and D. L. Holt, Acta Metall. 20 (1972) 569.

    Article  CAS  Google Scholar 

  24. L. I. Van Torne and G. Thomas, ibid. 1 (1963) 881.

    Article  Google Scholar 

  25. L. S. Chumbley, H. L. Downing, W. A. Spitzig and J. D. Verhoeven, Mater. Sci. Engng A117 (1989) 59.

    Article  Google Scholar 

  26. A. R. Pelton, F. C. Laabs, W. A. Spitzig and C. C. Cheng, Ultramicrosc. 22 (1987) 251.

    Article  CAS  Google Scholar 

  27. C. L. Trybus, L. S. Chumbley, W. A. Spitzig and J. D. Verhoeven, ibid. 30 (1989) 315.

    Article  CAS  Google Scholar 

  28. J. Gil Sevillano, in “Strength of Metals and Alloys”, Proceedings of ICSMA 5, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon, Oxford, 1980) p. 819.

    Google Scholar 

  29. J. D. Verhoeven, L. S. Chumbley, F. C. Laabs and W. A. Spitzig, Acta Metall. 39 (1991) 2825.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitzig, W.A., Biner, S.B. Comparison of strengthening in wire-drawn or rolled Cu-20% Nb with a dislocation accumulation model. Journal of Materials Science 28, 4623–4629 (1993). https://doi.org/10.1007/BF00414250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414250

Keywords

Navigation