Skip to main content
Log in

Ecotypic differentiation of Laminaria longicruris in relation to seawater nitrate concentration

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Genetic differentiation of Laminaria longicruris populations has been demonstrated in nitrate-poor (St. Margaret's Bay) and nitrate-rich (Bay of Fundy) regions of Nova Scotia, Canada. At 9°C half-saturation constants for growth (Ks) were smaller (1.1 μM NO -3 ) for St. Margaret's Bay plants than for plants from the Bay of Fundy (2.3 μM NO -3 ). Maximum specific growth rate (μmax) and maximum uptake rate (Vmax) were higher for St. Margaret's Bay than for Fundy plants. However half-saturation constants for nitrate uptake (Km) were similar for plants from the two populations. The capacity to accumulate nitrate in an internal tissue pool was larger in St. Margaret's Bay plants than in Fundy plants. The differences among the populations are thought to be adaptive responses to the local nitrate environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Anderson, M. R., A. Cardinal and J. Larochelle: An alternate growth pattern of Laminaria logicruris. J. Phycol. 17, 405–411 (1981)

    Google Scholar 

  • Bollman, R. C. and G. G. C. Robinson: The kinetics of organic acid uptake by three Chlorophyta in axenic culture. J. Phycol. 13, 1–5 (1977)

    Google Scholar 

  • Bolton, J. J.: Estuarine adaptation in populations of Pilayella littoralis (L.) Kjellm. (Phaeophyta, Ectocarpales). Estuar. coast. mar. Sci. 9, 273–280 (1979)

    Google Scholar 

  • Carpenter, E. J. and R. R. L. Guillard: Intraspecific differences in the nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52, 183–185 (1971)

    Google Scholar 

  • Chapin, F. S., III: The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11, 233–260 (1980)

    Google Scholar 

  • Chapman, A. R. O.: Methods for macroscopic algae. In: Handbook of phycological methods. Culture methods and growth measurements, pp 88–104 Ed. by J. R. Stein. Cambridge: Cambridge 1973

    Google Scholar 

  • Chapman, A. R. O. and J. A. Gagné: Environmental control of kelp growth in St. Margaret's Bay and on the south-west shore of Nova Scotia. Can. Tech. Rept., fish. aquat. Sci. 954, 194–207 (1980)

    Google Scholar 

  • Chapman, A. R. O. and J. S. Craigie: Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977)

    Google Scholar 

  • Chapman, A. R. O., J. W. Markham and K. Lüning: Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J. Phycol. 14, 195–198 (1978)

    Google Scholar 

  • Cleland, W. W.: The statistical analysis of enzyme kinetic data. Adv. Enzymol. 29, 1–32 (1967)

    Google Scholar 

  • Davis, P. H. and V. H. Heywood: Principles of angiosperm taxonomy, 556 pp. Edinburgh and London: Oliver and Boyd 1963

    Google Scholar 

  • Daubenmire, R. F.: Plants and environment, 422 pp. New York: Wiley 1974

    Google Scholar 

  • Dugdale, R. C.: Nutrient cycles. In: The ecology of the seas, pp 141–172. Ed. by D. H. Cushing and J. J. Walsh. Philadelphia: Saunders 1976

    Google Scholar 

  • Gagné, J. A., K. H. Mann and A. R. O. Chapman: Seasonal pattern of growth and storage in Laminaria longicrusis in relation to differing patterns of availability of nitrogen in the water. Mar. Biol. 69, 91–101 (1982)

    Google Scholar 

  • Gerard, V. A. and K. H. Mann: Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15, 33–41 (1979)

    Google Scholar 

  • Guillard, R. R. L., P. Kilham, and T. A. Jackson: Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal (=Cyclotella nana Husted). J. Phycol. 9, 233–237 (1973)

    Google Scholar 

  • Healey, F. P.: Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5, 281–286 (1980)

    Google Scholar 

  • Kain, J. M.: Synopsis of biological data on Laminaria hyperborea. FAO Fish. Synops. 87, 66 pp. 1971

    Google Scholar 

  • Kilham, S. S.: Kinetics of silicon-limited growth in the freshwater diatom Asterionella formosa. J. Phycol. 11, 396–399 (1975)

    Google Scholar 

  • Lüning, K.: Control of algal life-history by day-length and temperature. Syst. Assoc. sp. vol. 17(b), 915–945 (1980)

    Google Scholar 

  • Nelson, D. M., J. J. Goering, S. S. Kilham and R. R. L. Guilard: Kinetics of silic acid uptake and rates of silica dissolution in the marine diatom Thalassiosira pseudonana. J. Phycol. 12, 246–252 (1976)

    Google Scholar 

  • Probyn, T. A. and A. R. O. Chapman: Nitrogen uptake characteristics of Chordaria flagelliformis (Phaeophyta) in batch mode and continuous mode experiments. Mar. Biol. 71, 129–133 (1982)

    Google Scholar 

  • Provasoli, L.: Media and prospects for the cultivation of marine algae. In: Cultures and collections of algae. Proc. U.S.—Japan Conf. Hakone, September 1966, pp 63–75. Ed. by I. A. Watanabe and A. Hattori. Tokyo: Jap. Soc. Plant Physiol 1968

    Google Scholar 

  • Reed, R. H. and G. Russell: Adaptation to salinity stress in populations of Enteromorpha intestinalis (L.) Link. Estuar. coast. mar. Sci. 8, 251–258 (1979)

    Google Scholar 

  • Rhee, G.-Y.: Continuous culture in the phytoplankton ecology. Adv. Microbiol. 2, 151–203 (1980)

    Google Scholar 

  • Russell, G.: A study in populations of Pylaiella littoralis. J. mar. biol. Ass. U.K. 43, 469–483 (1963)

    Google Scholar 

  • Russell, G. and J. J. Bolton: Euryhaline ecotypes of Ectocarpus siliculosus (Dillw.) Lyngb. Estuar. coast. mar. Sci. 3, 91–94 (1975)

    Google Scholar 

  • Russell, G. and O. P. Morris: Copper tolerance in the marine fouling alga Ectocarpus siliculosus. Nature, Lond. 228, 288–289 (1970)

    Google Scholar 

  • Russell, G. and O. P. Morris: Ship fouling as an evolutionary process. In: Proc. 3rd, Int. Congress on marine corrosion and fouling, pp 719–730. Ed. by R. F. Acker, B. F. Brown, J. R. DePalma and W. P. Iverson: Evanston: Northwestern University Press 1973

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 125, 61–69 (1960)

    Google Scholar 

  • Syrett, P. J.: Nitrogen metabolism of microalgae. Can. Bull. fish. aquat. Sci. 210, 182–210 (1981)

    Google Scholar 

  • Underhill, P. A.: Nitrate uptake kinetics and clonal variability in the neritic diatom Biddulphia aurita. J. Phycol. 13, 170–176 (1977)

    Google Scholar 

  • Wallen, D. G. and L. D. Carter: Molybdenum dependence, nitrate uptake and photosynthesis of freshwater plankton algae. J. Phycol. 11, 345–349 (1975)

    Google Scholar 

  • Wilkinson, M.: Investigation on the autecology of Eugomontia sacculata Kornm., a shell-boring alga. J. exp. mar. Biol. Ecol. 15, 19–27 (1974)

    Google Scholar 

  • Yarish, C., P. Edwards and S. Casey: A culture study of salinity responses in ecotypes of two estuarine red algae. J. Phycol. 15, 341–346 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. O. Fournier, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza, J., Chapman, A.R.O. Ecotypic differentiation of Laminaria longicruris in relation to seawater nitrate concentration. Mar. Biol. 74, 213–218 (1983). https://doi.org/10.1007/BF00413924

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413924

Keywords

Navigation