Skip to main content
Log in

Assessment of intertidal growth and capacity adaptations in suspension-feeding bivalves

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Curves relating instantaneous growth rate to aerial exposure were determined for six species of bivalves in laboratory and shore experiments. A dimensionless index equatable with the relative intertidal growth performance of a species was calculated by integration of the growth curve after converting both growth rate and aerial exposure to decimal fractions. Intertidal growth performance of the bivalves tested corresponded well with their natural levels of occurrence on the shore, and improved in the following order: Modiolus modiolus < Argopecten irradians < Ostrea edulis < Mytilus edulis < Crassostrea virginica. Geukensia demissa, for which an index value could not be determined, grew faster intertidally than subtidally. The relative contributions made to intertidal growth performance by energy-conserving and energy-supplementing capacity adaptations were assessed by resolving the growth curves into energy-input and energy-loss components. The rate of energy loss due to intertidal exposure was lower in the high-shore species, and also less affected by harsher subaerial conditions, than in the low-shore species. Moreover, M. edulis and C. virginica showed abilities to supplement energy input such that growth per unit immersion time was better at certain intertidal levels than subtidally. Energy conservation and supplementation in these forms made roughly equal contributions to their improved intertidal growth relative to species occurring lower on the shore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Baird, R. H. and R. E. Drinnan: The ratio of shell to meat in Mytilus as a function of tidal exposure to air. J. Cons. perm. int. Explor. Mer. 22, 329–336 (1957)

    Google Scholar 

  • Ballantine, D. and J. E. Morton: Filtering, feeding and digestion in the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K. 35, 241–274 (1956)

    Google Scholar 

  • Bayne, B. L., C. J. Bayne, T. C. Carefoot and R. J. Thompson: The physiological ecology of Mytilus californianus Conrad. 2. Adaptations to low oxygen tension and air exposure. Oecologia (Berl.) 22, 229–250 (1976a)

    Google Scholar 

  • Bayne, B. L., R. J. Thompson and J. Widdows: Physiology I. In: Marine mussels: their ecology and physiology, pp 121–206. Ed. by B. L. Bayne. London: Cambridge University Press 1976b

    Google Scholar 

  • Boyden, C. R.: Aerial respiration of the cockle Cerastoderma edule in relation to temperature. Comp. Biochem. Physiol. 43A, 697–712 (1972a)

    Google Scholar 

  • Boyden, C. R.: The behaviour, survival and respiration of the cockles Cerastoderma edule and C. glaucum in air. J. mar. biol. Ass. U.K. 52, 661–680 (1972b)

    Google Scholar 

  • Coleman, N.: The oxygen consumption of Mytilus edulis in air. Comp. Biochem. Physiol. 45A, 393–402 (1973)

    Google Scholar 

  • Coleman, N.: The aerial respiration of Modiolus modiolus. Comp. Biochem. Physiol. 54A, 401–406 (1976)

    Google Scholar 

  • Helm, M. M. and E. R. Trueman: The effect of exposure on the heart rate of the mussel, Mytilus edulis L. Comp. Biochem. Physiol. 21, 171–177 (1967)

    Google Scholar 

  • Higgins, E.: Progress in biological inguiries, 1939. Adm. Rept. 39, App. I, Rept. U.S. Comm. Fish. 1940, 1–96 (1940)

    Google Scholar 

  • Jørgensen, C. B.: Growth efficiencies and factors controlling size in some mytilid bivalves, especially Mytilus edulis L.: a review and interpretation. Ophelia 15, 175–192 (1976)

    Google Scholar 

  • Kuenzler, E. J.: Structure and energy flow of a mussel population in a Georgia salt marsh. Limnol. Oceanogr. 6, 191–204 (1961)

    Google Scholar 

  • Langton, R. W.: Synchrony in the digestive diverticula of Mytilus edulis L. J. mar. biol. Ass. U.K. 55, 221–230 (1975)

    Google Scholar 

  • Langton, R. W.: Digestive rhythms in the mussel Mytilus edulis. Mar. Biol. 41, 53–58 (1977)

    Google Scholar 

  • Langton, R. W. and P. A. Gabbott: The tidal rhythm of extracellular digestion and the response to feeding in Ostrea edulis L. Mar. Biol. 24, 181–187, (1974)

    Google Scholar 

  • Langton, R. W. and G. U. McKay: The effect of continuous versus discontinuous feeding on the growth of hatchery reared spat of Crassostrea gigas Thunberg. J. Cons. perm. int. Explor. Mer. 35, 361–363 (1974)

    Google Scholar 

  • Langton, R. W. and G. U. McKay: Growth of Crassostrea gigas (Thunberg) spat under different feeding regimes in a hatchery. Aquaculture 7, 225–233 (1976)

    Google Scholar 

  • Lent, C. M.: Air-gaping by the ribbed mussel, Modiolus demissus (Dillwyn): effects and adaptive significance. Biol. Bull. mar. biol. Lab., Woods Hole 134, 60–73 (1968)

    Google Scholar 

  • Lewis, J. R.: The role of physical and biological factors in the distribution and stability of rocky shore communities. In: Biology of benthic organisms, pp 417–423. Ed. by B. F. Keegan, P. O. Ceidigh and P. J. S. Booden. New York: Pergamon Press 1977

    Google Scholar 

  • Moore, M. N., D. M. Lowe and S. L. Moore: Induction of lysosomal destabilization in marine bivalve molluscs exposed to air. Mar. Biol. Lett. 1, 47–57 (1979)

    Google Scholar 

  • Morton, J. E.: The tidal rhythm of feeding and digestion in the Pacific oyster, Crassostrea gigas (Thunberg). J. exp. mar. Biol. Ecol. 26, 135–151 (1977)

    Google Scholar 

  • Morton, J. E.: The tidal rhythm and action of the digestive system of the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K. 35, 563–586 (1956)

    Google Scholar 

  • Morton, J. E., A. D. Boney and E. D. S. Corner: The adaptations of Lasaea rubra (Montagu), a small intertidal lamellibranch. J. mar. biol. Ass. U.K. 36, 383–405 (1957)

    Google Scholar 

  • Newell, R. C.: Effects of fluctuations in temperature on the metabolism of intertidal invertebrates. Am. Zool. 9, 293–307 (1969)

    Google Scholar 

  • Newell, R. C.: Adaptations to intertidal life. In: Adaptation to the environment. Essays on the physiology of marine animals, pp 1–82. Ed. by R. C. Newell, Boston: Butterworths 1976

    Google Scholar 

  • Newell, R. C.: Biology of intertidal animals, 781 pp. Faversham, Kent: Marine Ecological Surveys Ltd. 1979

    Google Scholar 

  • Newell, R. C., V. I. Pye and M. Ahsanullah: Factors affecting the feeding rate of the winkle Littorina littorea. Mar. Biol. 9, 138–144 (1971)

    Google Scholar 

  • Owen, G.: Lysosomes, peroxisomes and bivalves. Sci. Progr. 60, 299–318 (1972)

    Google Scholar 

  • Pamatmat, M. M.: Anaerobic heat production of bivalves (Polymesoda caroliniana and Modiolus demissus) in relation to temperature, body size, and duration of anoxia. Mar. Biol. 53, 223–229 (1979)

    Google Scholar 

  • Prosser, C. L.: Physiological adaptations in animals. In: Physiological adaptation to the environment, pp 3–18. Ed. by F. J. Vernberg. New York: Intext Educational Publishers 1975

    Google Scholar 

  • Ritz, D. A. and D. J. Crisp: Seasonal changes in feeding rate in Balanus balanoides. J. mar. biol. Ass. U.K. 50, 223–240 (1970)

    Google Scholar 

  • Schlieper, C.: Die Regulation des Herzschlages der Miesmuschel Mytilus edulis L. bei geöffneten und bei geschlossenen Schalen. Kiel. Meeresforsch. 11, 139–148 (1955)

    Google Scholar 

  • Schlieper, C. and R. Kowalski: Ein zellularer Regulationsmechanismus für erhöhte Kiemenventilation nach Anoxybiose bei Mytilus edulis L. Kiel. Meeresforsch. 14, 42–47 (1958)

    Google Scholar 

  • Seed, R. and R. A. Brown: Growth as a strategy for survival in two marine bivalves, Cerastoderma edule and Modiolus modiolus. J. Anim. Ecol. 47, 238–292 (1978)

    Google Scholar 

  • Thompson, R. J., C. J. Bayne, M. N. Moore and T. H. Carefoot: Haemolymph volume, changes in biochemical composition of the blood, and cytological responses of the digestive cells in Mytilus californianus Conrad, induced by nutritional, thermal and exposure stress. J. comp. Physiol. 127, 287–298 (1978)

    Google Scholar 

  • Vernberg, W. B. and F. J. Vernberg: Environmental physiology of marine animals, 346 pp. Berlin: Springer-Verlag 1972

    Google Scholar 

  • Widdows, J., B. L. Bayne, D. R. Livingstone, R. L. E. Newell and P. Donkin: Physiological and biochemical responses of bivalve molluscs to exposure to air. Comp. Biochem. Physiol. 62A, 301–308 (1979)

    Google Scholar 

  • Zar, J. H.: Biostatistical analysis, 620 pp. New Jersey: Prentice-Hall, Inc. 1974

    Google Scholar 

  • Zwaan, A. de: Anaerobic energy metabolism in bivalve molluscs. Oceanogr. Mar. Biol. Ann. Rev. 15, 103–187 (1977)

    Google Scholar 

  • Zwaan, A. de and T. C. M. Wijsman: Anaerobic metabolism in bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. 54B, 313–324 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. K. Pierce, College Park

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillmor, R.B. Assessment of intertidal growth and capacity adaptations in suspension-feeding bivalves. Mar. Biol. 68, 277–286 (1982). https://doi.org/10.1007/BF00409594

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409594

Keywords

Navigation