Skip to main content
Log in

Laboratory method of analysis of swarming behaviour in macroplankton: combination of a modified flume tank and stereophotographic techniques

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This paper describes a flume tank in which the various physical and behavioural conditions encountered by swarming macroplankton can be manipulated, and a mathematical stereophotographic technique, for use in the calculation of the three-dimensional co-ordinates of individual organisms within the swarms. The mathematical model incorporates the Direct-Linear Transformation equation which describes the position of the object and its image in relation to the camera-perspective centre of the photographic system. Combining this equation with a modified light-ray tracement technique to solve for the passage of light through a three-media environment, the actual three-dimensional co-ordinates of the individual organisms and subsequently their inter-individual distances, bearings and angles of elevation may be derived. The distances between adjacent animals can be measured to an accuracy of 0.24 mm (SD=0.21) using this photogrammetric technique. The design of the flume tank allows for the manipulation of water current speed and flow patterns, substrate, and light intensity. Six species of mysid and one species of euphausiid have been induced to swarm in the flume tank. The conditions required to induce swarming and schooling in the laboratory are described. The inter-individual distances, bearings and angles of elevation have been calculated for Paramesopodopsis rufa, Anisomysis mixta australis, Australerythrops paradicei (Crustacea: Mysidacea) and Nyctiphanes australis (Crustacea: Euphausiacea) using the stereophotographic technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arnold, G. P.: A flume for behaviour studies of marine fish. J. exp. Biol. 51, 39–47 (1969)

    Google Scholar 

  • Cullen, J. M., E. Shaw and H. A. Baldwin: Methods for measuring the three-dimensional structure of fish schools. Anim. Behav. 13, 534–543 (1965)

    PubMed  Google Scholar 

  • Clutter, R. I.: The microdistribution and social behaviour of some pelagic mysid shrimps. J. exp. mar. Biol. Ecol. 3, 125–155 (1969)

    Article  Google Scholar 

  • Dambach, M.: Vergleichende Untersuchungen über das Schwarmverhalten von Tilapia-Jungfischen (Cichlidea). Z. Tierpsychol. 20, 267–296 (1963)

    Google Scholar 

  • Dill, L. M., R. L. Dunbrack and P. F. Major: A new stereophotographic technique for analyzing the three-dimensional structure of fish schools. Envir. Biol. Fish. 6, 7–13 (1981)

    Google Scholar 

  • Hasegawa, E. and H. Tsuboi: A study of the 3'd structure of marine fish schools by the stereo method with two cameras. La Mer (Bull. Soc. franco-jap. Océanogr.) 19, 179–184 (1981)

    Google Scholar 

  • Hellawell, J. M., H. Leatham and G. I. Williams: The upstream migratory behaviour of salmonids in the River Frome, Dorset. J. Fish Biol 6, 729–744 (1974)

    Google Scholar 

  • Hohle, D. I. J.: Reconstruction of the underwater object. Photogramm. Engng. 37, 948–954 (1971)

    Google Scholar 

  • Hunter, J. R.: Procedure for analysis of schooling behaviour. J. Fish. Res. Bd Can. 23, 547–562 (1966)

    Google Scholar 

  • Karara, H. M. and Y. I. Abdel-Aziz: Accuracy aspects of nonmetric imageries. Photogramm. Engng 40, 1107–1117 (1974)

    Google Scholar 

  • Katz, L. C., M. J. Potel and R. J. Wasserug: Structure and mechanisms of schooling in tadpoles of the clawed frog, Xenopus laevis. Anim. Behav. 29, 20–33 (1981)

    Google Scholar 

  • Kils, U.: The swimming behaviour, swimming performance and energy balance of antarctic krill, Euphausia superba. S.C.A.R. Biomass Rep. Ser. 30, 70–89 (1981)

    Google Scholar 

  • Koltes, K. H.: Temporal patterns in the three-dimensional structure and activity of schools of the Atlantic silverside Menidia menidia. Mar. Biol. 78, 113–122 (1984)

    Article  Google Scholar 

  • Major, P. F. and L. M. Dill: The 3-dimensional structure of airborne bird flocks. Behavl Ecol. Sociobiol. 4, 111–112 (1978)

    Google Scholar 

  • Marzan, G. T. and H. M. Karara: A computer program for direct linear transformation solution of the collinearity condition, and some applications of it. In: Proceedings of the Symposium on Close-Range Photogrammetric Systems. Campaign, Illinois, USA, pp 420–476. Ed. by H. M. Karara. Falls, Church, Virginia: American Society of Photogrammetry 1975

    Google Scholar 

  • Moffitt, F. H. and E. M. Mikhail: 3′ dimensional transformation. In: Photogrammetry, 3rd ed. pp 371–374. New York: Harper & Row 1980

    Google Scholar 

  • Partridge, B. L.: The effect of school size on the structure and dynamics of minnow schools. Anim. Behav. 28, 68–77 (1980)

    Google Scholar 

  • Partridge, B. L. and T. J. Pitcher: The sensory basis of fish schools: relative roles of lateral lines and vision. J. comp. Physiol. 135, 315–325 (1980)

    Google Scholar 

  • Partridge, B. L., T. Pitcher, J. M. Cullen and J. Wilson: The threedimensional structure of fish schools. Behavl Ecol. Sociobiol. 6, 277–288 (1980)

    Article  Google Scholar 

  • Pitcher, T. J.: The three-dimensional structure of schools of the minnow, Phoxinus phoxinus (L.). Trans. Am. Fish. Soc. 102, 840–843 (1973)

    Article  Google Scholar 

  • Pitcher, T. J.: A periscopic method for determining the 3-dimensional positions of fish in schools. J. Fish. Res. Bd Can. 32, 1533–1538 (1975)

    Google Scholar 

  • Potel, M. J. and R. J. Wasserug: Computer tools for the analysis of schooling. Envir. Biol. Fish. 6, 15–19 (1981)

    Google Scholar 

  • Smith, J. A. and A. J. Dartnall: Boundary layer control by water pennies (Coleoptera: Psephenidae). Aquat. Insects 2, 65–72 (1980)

    Google Scholar 

  • Svoboda, A.: Simulation of oscillating water movement in the laboratory, cultivation of shallow water sedentary organisms. Helgoländer wiss. Meeresunters. 20, 676–684 (1970)

    Google Scholar 

  • Symons, P. E. K.: Estimating distances between fish schooling in an aquarium. J. Fish. Res. Bd Can. 28, 1805–1806 (1971)

    Google Scholar 

  • Trivellato, D. et H. Décamps: Dipositif expérimental pour l'étude du comportement d'espèces benthiques en eau courante. Annls Limnol. 7, 145–155 (1971)

    Google Scholar 

  • Vogel, S. and M. LaBarbera: Simple flow tanks for research and teaching. BioSci. 28, 638–643 (1978)

    Google Scholar 

  • Walesby, N. J.: Some aspects of the locomotor activity patterns of Praunus flexuosus and schooling behaviour of Neomysis integer, 137 pp. M.Sc. thesis, University College of North Wales, UK 1973

    Google Scholar 

  • Wasserug, R. J., A. M. Lum and M. J. Potel: An analysis of school structure for tadpoles (Anura: Amphibia). Behavl Ecol. Sociobiol. 9, 15–22 (1981)

    Article  Google Scholar 

  • Zeldis, J. R. and J. B. Jillett: Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4, 839–857 (1982)

    Google Scholar 

  • Zelickman, E. A.: Group orientation in Neomysis mirabilis (Mysidacea: Crustacea). Mar. Biol. 24, 251–258 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, D.P., Tay, D. & Zwart, P.R. Laboratory method of analysis of swarming behaviour in macroplankton: combination of a modified flume tank and stereophotographic techniques. Mar. Biol. 90, 517–527 (1986). https://doi.org/10.1007/BF00409272

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409272

Keywords

Navigation