Marine Biology

, Volume 95, Issue 2, pp 275–287 | Cite as

Skeletal calcification patterns in the sea urchin Tripneustes gratilla elatensis (Echinoidea: Regularia)

I. Basic patterns
  • J. Dafni
  • J. Erez


A comprehensive study on skeletal calcification in the regular echinoid Tripneustes gratilla elatensis was carried out between 1979 and 1981 in the northern Gulf of Eilat (Red Sea), employing size measurement, allometry and radiotracer techniques. Uptake rates of the isotope 45Ca were used to estimate the calcification rate of whole tests. Calcification rates of the different skeletal parts and the 45Ca uptake along the sutural margins of individual plates were also measured. Whole-test calcification rates for juvenile individuals, 11 to 13 mm in diameter, relative to their skeletal Ca dry weight, calculated using the allometric relationship between skeletal dry weight and diameter, were 1.5 to 1.8% d-1 for 4 to 8 h of incubation, while calcification rates obtained from periodical size measurements and allometrical constants amounted to 2.75% d-1. The apparent discrepancy between these results is explained partly by the short duration of the incubations, during which the internal calcium pools, apparently in the coelom, were not fully saturated with the radioactive tracer. This discrepancy decreased when longer radioactive incubations were used, or when a post-incubational deposition of 45Ca from these pools was allowed. The size of these pools is roughly 10 μmol Ca per 13-mm individual, and it resides probably in the coelom where Ca concentration is ∼ 3 times higher than in seawater. The calcification rates given as percentage of skeleton added per day, both for the radioactive and allometric methods, decreased with the urchins' size. The calcification patterns of various components of the skeleton generally fitted their allometrical trends — a relative decrease in the size of the spines, apical plates and lantern. The teeth calcify rapidly to compensate for the constant erosion of their tips. Calcification per plate decreased exponentially from the apex to the peristome. Plate-edge calcification patterns of both interambulacral and ambulacral plates fitted patterns derived from size increment measurements, using natural growth-lines. Typically, most plates grow more horizontally (latitudinally) than vertically. It is suggested that the vertical vs horizontal calcification ratio (v/h) determines the individual plate growth and affects the whole test morphology.


Calcification Rate 45Ca Uptake Calcification Pattern Individual Plate Radiotracer Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, D. J. and C. J. Crossland: Coral calcification: sources of error in radioisotope technique. Mar. Biol. 42, 119–129 (1977)Google Scholar
  2. Barnes, D. J. and C. J. Crossland: Variability in the calcification rate of Acropora acuminata measured with radioisotopes. Coral Reefs 1, 53–75 (1982)Google Scholar
  3. Böhm, L.: Application of the 45Ca tracer method for determination of calcification rates in calcareous algae: effect of calcium exchange and differential saturation of algal calcium pools. Mar. Biol. 47, 9–14 (1978)Google Scholar
  4. Böhm, L. and T. F. Goreau: Rates of turnover and net accretion of calcium and role of calcium binding polysaccharides during calcification in the calcareous alga Halimeda opuntia (L.). Int. Revue ges. Hydrobiol. 58, 723–740 (1973)Google Scholar
  5. Borowitzka, M. A.: Calcium exchange and measurement of calcification rates in the calcareous red alga Amphiroa foliacea. Mar. Biol. 50, 339–347 (1979)Google Scholar
  6. Chamberlain, J. A. Jr.: Mechanical properties of coral skeleton, compressive strength and its adaptive significance. Paleobiology 4, 419–435 (1978)Google Scholar
  7. Dafni, J.: Abnormal growth patterns in the sea urchin Tripneustes cf. gratilla (L.) under pollution (Echinodermata: Echinoidea). J. exp. mar. Biol. Ecol. 47, 259–279 (1980)CrossRefGoogle Scholar
  8. Dafni, J.: A new subspecies of Tripneustes gratilla from the northern Red Sea (Echinodermata: Echinoidea: Toxopneustidae). Isr. J. Zool. 32, 1–12 (1983a)Google Scholar
  9. Dafni, J.: Aboral depressions in the tests of the sea urchin Tripneustes cf. gratilla (L.) in the Gulf of Eilat, Red Sea. J. exp. mar. Biol. Ecol. 67, 1–15 (1983b)CrossRefGoogle Scholar
  10. Dafni, J.: Skeletal growth and calcification in the short-spined sea urchin (Tripneustes gratilla elatensis). Ph.D. dissertation 109+V pp., Hebrew University of Jerusalem. Hebrew with English, summary 1984Google Scholar
  11. Dafni, J.: Effect of mechanical stress on the calcification pattern in regular echinoid skeletal plates, pp 233–236. In: Echinodermata. Proc. 5th int. Echinoderm Conf., Galway, Sept. 1984. Ed. by B. F. Keegan and B. D. S. O'Connor. Rotterdam: Balkema 1985Google Scholar
  12. Dafni, J.: A biomechanical model for the morphogenesis of regular echinoid tests. Paleobiology 12, 143–160 (1986)Google Scholar
  13. Dafni, J. and J. Erez: Differential growth in Tripneustes gratilla (Echinoidea), pp 71–75 In: Echinoderms. Proc. 4th int. Echinoderm Conf., Tampa Bay. Ed. by J. M. Lawrence. Rotterdam: A. A. Balkema 1982Google Scholar
  14. Dafni, J. and J. Erez: Skeletal calcification patterns in the sea urchin Tripneustes gratilla elatensis II. Effect of various treatments. Mar. Biol. 95, 289–297 (1987)Google Scholar
  15. Deutler, F.: Über das Washstum des Seeigelskeletts. Zool. Jb. (Anat.) 48, 119–200 (1926)Google Scholar
  16. Ebert, T. A.: Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49, 1075–1091 (1968)Google Scholar
  17. Ebert, T. A.: Longevity, life history, and relative body wall size in sea urchins. Ecol. Monogr. 52, 353–394 (1982)Google Scholar
  18. Ernst, G.: Actuopaläontologie und Merkmalsvariabilität bei Mediterranen Echiniden und Rückschlüsse auf die ökologie und Artumgrenzung fossiler Formen. Paläontol. Z. 47, 188–216 (1973)Google Scholar
  19. Goreau, T. F.: The physiology of skeletal formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull. mar. biol. Lab., Woods Hole 116, 59–75 (1959)Google Scholar
  20. Gould, S. J.: Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–640 (1966)Google Scholar
  21. Heatfield, B. M.: Calcification in echinoderms: effect of temperature and Diamox on incorporation of 45Ca in vitro by regenerating spines of Strongylocentrotus purpuratus Biol. Bull. mar. biol. Lab., Woods Hole 139, 151–163 (1970)Google Scholar
  22. Huxley, J. S.: Problems of relative growth. New York: Dial Press 1932Google Scholar
  23. Jensen, M.: The ultrastructure of the echinoid skeleton. Sarsia 48, 39–48 (1972)Google Scholar
  24. Johnson, N. O.: A trend line for growth series. J. Am. Stat. Ass. 30, 717 (1935)Google Scholar
  25. Fuji, A.: Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish., Hokkaido Univ. 15, 83–160 (1967)Google Scholar
  26. Kaneko, I., Y. Ikeda and H. Ozaki: Absorption of calcium through digestive tract in the sea urchin. Bull. Jap. Sci. Fish. 47, 1421–1424 (1981a)Google Scholar
  27. Kaneko, I., Y. Ikeda and H. Ozaki: Cbsorption of calcium from sea water and its excretion in sea urchin. Bull. Jap. Sci. Fish. 47, 1425–1430 (1981b)Google Scholar
  28. Kaneko, I., Y. Ikeda and H. Ozaki: Calcium level of each part in sea urchin. Bull Jap. Sci. Fish. 48, 11–13 (1982)Google Scholar
  29. Krumgaltz, B. S.: Calcium distribution in the world ocean waters. Oceanologia Acta 5, 121–128 (1982)Google Scholar
  30. Märkel, K.: Wachstum des Coronarskeletes von Paracentrotus lividus Lmk. (Echinodermata: Echinoidea). Zoomorphologie 82, 259–280 (1975)Google Scholar
  31. Märkel, K.: Struktur und Wachstum des Coronarskeletes von Arbacia lixula Linné (Echinodermata: Echinoidea). Zoomorphologie 84, 279–299 (1976)Google Scholar
  32. Märkel, K.: Experimental morphology of coronar growth in regular echinoids. Zoomorphology 97, 31–52 (1981)Google Scholar
  33. McPherson, B. F.: Contributions to the biology of the sea urchin Tripneustes ventricosus. Bull. mar. Sci. 15, 228–244 (1965)Google Scholar
  34. Moss, M. L. and M. M. Meehan: Sutural connective tissues in the test of an echinoid Arbacia punctulata. Acta Anat. 66, 279–304 (1967)PubMedGoogle Scholar
  35. Moss, M. L. and M. M. Meehan: Growth of the echinoid test. Acta Anat. 69, 409–444 (1968)PubMedGoogle Scholar
  36. Nauen, C. E. and L. Böhm: Skeletal growth in the echinoderm Asterias rubens L., estimated by 45Ca labelling. J. exp. mar. Biol. Ecol. 38, 261–269 (1969)CrossRefGoogle Scholar
  37. Pearse, J. S. and V. B. Pearse: Grwoth zones in the echinoid skeleton. Am. Zool. 15, 731–753 (1975)Google Scholar
  38. Raup, D. M.: The endoskeleton. In: Pysiology of Echinodermata, pp 379–395. Ed. by R. A. Boolootian. New York: Interscience 1966Google Scholar
  39. Raup, D. M.: Theoretical morphology of echinoid growth. J. Paleontol. 42 (Suppl.), 50–63 (1968)Google Scholar
  40. Regis, M. B.: Premières données sur la croissance de Paracentrotus lividus Lmk. Téthys 1, 1049–1056 (1969)Google Scholar
  41. Regis, M. B.: Premières données sur la croissance de l'echinid Arbacia lixula (L.). Téthys 5, 167–172 (1973)Google Scholar
  42. Ricker, W. E.: Linear regression in fishery research. J. Fish. Res. Bd Can. 30, 409–434 (1973)Google Scholar
  43. Smith, A. B.: Stereom microstructure of the echinoid test. Spec. Pap. Palaeont. 25, 1–81 (1980)Google Scholar
  44. Strathmann, R. R.: The role of spines in preventing structural damage to the echinoid test. Paleobiology 7, 400–406 (1981)Google Scholar
  45. Telford, M.: Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology 105, 114–124 (1985)CrossRefGoogle Scholar
  46. Vadas, R. L.: Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47, 337–371 (1977)Google Scholar
  47. Weber, J. N.: The incorporation of magnesium into the skeletal calcites of echinoderms. Am. J. Sci. 267, 537–566 (1969)Google Scholar
  48. Weber, J., R. Greer, B. Voight, E. White and R. Roy: Unusual strength properties of echinoderm calcite related to structure. Ultratr. Res. 26, 355–366 (1969)Google Scholar
  49. White, M., B. F. Keegan and Y. Leahy: Growth retardation in the regular echipoid Echinus esculentus Linnaeus. Echinodermata, pp 369–375. Proc. 5th int. Echinoderm Conf., Galway, Sept. 1984. Ed. by B. F. Keegan and B. D. S. O'Connor. Rotterdam: Balkema. 1985Google Scholar
  50. Wilbur, K. M. and L. H. Jodrey: Studies on the shell formation V: the inhibition of shell formation by carbonic anhydrase inhibitors. Biol. Bull. mar. biol. Lab., Woods Hole 108, 359–365 (1955)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Dafni
    • 1
  • J. Erez
    • 1
  1. 1.H. Steinitz Marine Biology LaboratoryThe Hebrew University of JerusalemEilatIsrael

Personalised recommendations