Advertisement

Marine Biology

, Volume 95, Issue 2, pp 259–266 | Cite as

Ultrastructure and behavior of the larva of Phragmatopoma californica (Polychaeta: Sabellariidae): identification of sensory organs potentially involved in substrate selection

  • M. R. Amieva
  • C. G. Reed
  • J. R. Pawlik
Article

Abstract

The tentacles of the larvae of Phragmatopoma californica (Fewkes) a tubicolous, reef-building polychaete, were examined by video-equipped light microscopy and transmission and scanning electron microscopy. The surface of the tentacles has a unique ciliation pattern, consisting of dorsal tufts of short immotile cilia, ventrolateral tufts of short and long immotile cilia, and ventral motile cilia. Cells bearing immotile cilia are primary sensory cells with long basal processes that form synapses with basiepithelial nerve fibers. The sensory cell cytoplasm is similar to that of nervous tissue, and contains microtubules, neurofilaments, and synaptic vesicles. Sensory cell synapses with basiepithelial nerves appear to be both axodendritic and axoaxonic. The structure of the immotile cilia is compared to that of motile cilia. Unlike motile cilia, immotile cilia are short, rigid, end in a blunt tip and possess and axoneme with typically arranged mictotubules that terminate in an electron-dense end plate. The basal feet of immotile cilia do not anastomose with adjacent basal bodies, and the ciliary membrane is loosely applied to the axoneme and is covered by a surface coat of filamentous material. The use of the larval tentacles during substrate exploration, and the location and ultrastructure of sensory cilia, indicate that they may be involved in the perception of substrateassociated chemical signals and/or mechanical cues of significance in substrate selection.

Keywords

Polychaeta Synaptic Vesicle Sensory Organ Basal Body Cell Cytoplasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Amieva, M. R. and C. G. Reed: Functional morphology of the larval tentacles of Phragmatopoma californica (Polychaeta: Sabellariidae): composite larval and adult organs of multifunctional significance. Mar. Biol. 95, 243–258 (1987)Google Scholar
  2. Bonar, D. B.: Ultrastructure of a cephalic sensory organ in larvae of the gastropod Phestilla sibogae (Aeolidacea, Nudibranchia) Tissue Cell 10, 153–165 (1978)PubMedGoogle Scholar
  3. Burke, R. D.: The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can. J. Zool. 61, 1701–1719 (1983)Google Scholar
  4. Chia, F. S. and M. E. Rice (eds.): Settlement and metamorphosis of marine invertebrate larvae, 290 pp. New York: Elsevier, North Holland 1978Google Scholar
  5. Crisp, D. J.: Factors influencing the settlement of marine invertebrate larvae. In: Chemoreception in marine organisms, pp 177–265. Ed. by P. T. Grant and A. M. Mackie. New York: Academic Press 1974Google Scholar
  6. Crisp, D. J.: Settlement responses in marine organisms. In: Adaptation to the environment, pp 83–124. Ed. by R. C. Newell. London: Butterworths 1976Google Scholar
  7. Crisp, D. J.: Overview of research on marine invertebrate larvae, 1940–1980. In: Marine biodeterioration: an interdisciplinary study, pp 103–126. Ed. by J. D. Costlow and R. C. Tipper. Annapolis, MD: Naval Institute Press 1984Google Scholar
  8. Dales, R. P.: The development and structure of the anterior region of the body in the Sabellariidae, with special reference to Phragmatopoma californica. Q. J. microsc. Sci. 93, 435–452 (1952)Google Scholar
  9. Dorsett, D. A. and R. Hyde: The fine structure of the compound sense organs of the cirri of Nereis diversicolor. Z. Zellforsch. mikrosk Anat. 97, 512–527 (1969)PubMedGoogle Scholar
  10. Eckelbarger, K. J.: Larval development and population aspects of the reef-building polychaete Phragmatopoma lapidosa from the east coast of Florida. Bull. mar. Sci. 26, 117–132 (1976)Google Scholar
  11. Eckelbarger, K. J.: Metamorphosis and settlement in the Sabellariidae. In: Settlement and metamorphosis of marine invertebrate larvae, pp 145–164. Ed. by F. S. Chia and M. E. Rice. New York: Elsevier North Holland Biomedical Press 1978Google Scholar
  12. Eckelbarger, K. J. and F. S. Chia: Scanning electron microscopic obervations of the larval development of the reef-building polychaete Phragmatopoma lapidosa. Can. J. Zool. 54, 2082–2088 (1976)Google Scholar
  13. Jensen, R. A. and D. E. Morse: Intraspecific facilitation of larval recruitment: gregarious settlement of the polychaete Phragmatopoma californica (Fewkes). J. exp. mar. Biol. Ecol. 83, 107–126 (1984)CrossRefGoogle Scholar
  14. Laverack, M. S.: On the receptors of marine invertebrates. Mar. Biol. A. Rev 6, 249–324 (1968)Google Scholar
  15. Laverack, M. S.: The structure and function of chemoreceptor cells. In: Chemoreception in marine organisms, pp 1–48. Ed. by P. T. Grant and A. M. Mackie. New York: Academic Press 1974Google Scholar
  16. Nott, J. A.: Settlement of barnacle larvae: surface of the antennular attachment disc by scanning electron microscopy. Mar. Biol. 2, 248–251 (1969)Google Scholar
  17. Nott, J. A. and B. A. Foster: On the structure of the antennular attachment organ of the cypris larvae of Balanus balanoides (L). Phil. Trans. R. Soc. Lond. Ser. B. 256, 115–134 (1969)Google Scholar
  18. Pawlik, J. R.: Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta). Mar. Biol. 91, 59–68 (1986)Google Scholar
  19. Pawlik, J. R. and D. J. Faulkner: Specific free fatty acids induce larval settlement and metamorphosis of the reef-building tube worm Phragmatopoma california (Fewkes). J. exp. mar. Biol. Ecol. 102, 301–310 (1986a)Google Scholar
  20. Pawlik, J. R. and D. J. Faulkner: The gregarious settlement of sabellariid polychaetes: new perspectives on chemical cues. In: Proc. int. Conf. Marine Biodeterioration. Goa, India. 1986bGoogle Scholar
  21. Pennington, J. T. and F. S. Chia. Morphological and behavioral defenses of trochophore larvae of Sabellaria cementarium (Polychaeta) against four planktonic predators. Biol. Bull. mar. biol. Lab., Woods Hole 167, 168–175 (1984)Google Scholar
  22. Pitelka, D. R.: Basal bodies and root structures. In: Cilia and flagella, pp 437–469, Ed. by M. A. Sleigh. London, New York: Academic Press 1974Google Scholar
  23. Smith, P. R. and F. S. Chia: Larval development and metamorphosis of Sabellaria cementarium Moore, 1906 (Polychaeta: Sabellariidae). Can. J. Zool. 63, 1037–1049 (1985a)Google Scholar
  24. Smith, P. R. and F. S. Chia: Metamorphosis of the sabellariid polychaete Sabellaria cementarium Moore: a histological analysis. Can. J. Zool. 63, 2852–2866 (1985b)Google Scholar
  25. Wilson, D. P.: The larvae of the British Sabellarians. J. mar. biol. Ass. U.K. 16, 387–435 (1929)Google Scholar
  26. Wilson, D. P.: Some aspects of the development of eggs and larvae of Sabellaria alveolata (L.). J. mar. biol. Ass. U.K. 48, 367–386 (1968a)Google Scholar
  27. Wilson, D. P.: The settlement behaviour of the larvae of Sabellaria alveolata (L.). J. mar. biol. Ass. U.K. 48, 387–435 (1968b)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. R. Amieva
    • 1
  • C. G. Reed
    • 1
  • J. R. Pawlik
    • 2
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations