Advertisement

Marine Biology

, Volume 95, Issue 2, pp 237–242 | Cite as

Temporal patterns of shell-gape in Mytilus edulis

  • C. Ameyaw-Akumfi
  • E. Naylor
Article

Abstract

Hitherto published evidence of the presence or absence of endogenous “activity” rhythms in bivalve molluscs is equivocal. Mytilus edulis L. were collected from a North Wales (UK) estuary in 1985, and shell-gaping was investigated in individual mussels under constant conditions in the laboratory. Results suggest that there is no endogenous circatidal rhythm of shell-gaping in this species, This is consistent with the view that, unlike mobile species, sessile intertidal species are much more likely to exhibit exogenous rather than endogenous responses to tidal fluctuations. There is some evidence of weak circadian rhythmicity of shell-gaping in M. edulis, with greater duration of shell-closure during hours of expected daylight. Such behaviour could represent an adaptational defence against visually-feeding predators.

Keywords

Bivalve Circadian Rhythmicity Temporal Pattern Constant Condition Mytilus Edulis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Atkinson, R. J. A. and A. J. Parsons: Seasonal patterns of migration and locomotor rhythmicity in populations of Carcinus. Neth. J. Sea Res. 7, 81–93 (1973)CrossRefGoogle Scholar
  2. Beentjes, M. P. and B. G. Williams: Endogenous circatidal rhythmicity in the New Zealand cockle Chione stutchburyi (Bivalvia, Veneridae). Mar. Behav. Physiol. 12, 171–180 (1986)Google Scholar
  3. Bennett, M. F.: Rhythmic activity of Venus mercenaria and its modifiability by light. Biol. Bull. mar. biol. Lab., Woods Hole 107, 174–191 (1954)Google Scholar
  4. Bolt, S. R. L. and E. Naylor: Interaction of endogenous and exogenous factors controlling locomotor activity rhythms in Carcinus exposed to tidal salinity cycles. J. exp. mar. Biol. 85, 47–56 (1985)CrossRefGoogle Scholar
  5. Brown, F. A.: Persistent activity rhythms in the oyster. Am. J. Physiol. 178, 510–514 (1954)PubMedGoogle Scholar
  6. Davenport, J.: The isolation response of mussels (Mytilus edulis L.) exposed to falling seawater concentrations. J. mar. biol. Ass. U.K. 59, 391–409 (1979)Google Scholar
  7. Davenport, J.: The opening response of mussels (Mytilus edulis) exposed to rising seawater concentrations. J. mar. biol. Ass. U.K. 61, 667–678 (1981)Google Scholar
  8. Davenport, J. and A. D. Woolmington: A new method of monitoring ventilatory activity in mussels and its use in a study of the ventilatory patterns of Mytilus edulis L. J. exp. mar. Biol. Ecol. 62, 55–67 (1982)CrossRefGoogle Scholar
  9. Davids, C.: The influence of suspensions of microorganisms of different concentrations on the pumping and retention of food by the mussel Mytilus edulis L. Neth. J. Sea. Res. 2, 233–249 (1964)Google Scholar
  10. Dodgson, R. W.: Report on mussel purification. Fishery Invest., Lond. (Ser. 2) 10 (1), 1–498 (1928)Google Scholar
  11. Enright, J. T.: The search for rhythmicity in biological time series. J. theor. Biol. 8, 426–468 (1965)PubMedGoogle Scholar
  12. Galtsoff, P. S.: Experimental study of the function of the oyster gills and its bearing on the problems of oyster culture and sanitary control of the oyster industry. Bull. Bur. Fish., Wash. 44, 1–39 (1928)Google Scholar
  13. Griffiths, R. J.: Filtration, respiration and assimilation in the black mussel Choromytilus meridionalis. Mar. Ecol. Prog. Ser. 3, 63–70 (1980)Google Scholar
  14. Hawkins, A. J. S., B. L. Bayne and K. R. Clarke: Co-ordinated rhythms of digestion, absorption and excretion in Mytilus edulis (Bivalvia: Mollusca). Mar. Biol. 74, 41–48 (1983)Google Scholar
  15. Helm, H. M. and E. R. Trueman: The effect of exposure on the heart rate of the mussel Mytilus edulis L. Comp. Biochem. Physiol. 21, 171–177 (1966)CrossRefGoogle Scholar
  16. Higgins, P. J.: Effects of food availability on the valve movements and feeding behaviour of juvenile Crassostrea virginiea (Gmelin). I. Valve movements and periodic activity. J. exp. mar. Biol. Ecol. 45, 229–244 (1980)CrossRefGoogle Scholar
  17. Hopkins, A. E.: Temperature and shell movements of oysters. Bull. Bur. Fish., Wash. 47, 1–14 (1931)Google Scholar
  18. Hughes, R. N.: A study of feeding in Scrobicularia plana. J. mar. biol. Ass. U.K. 49 805–825 (1969)Google Scholar
  19. Jørgensen, C. B.: The rate of feeding by Mytilus in different kinds of suspension. J. mar. biol. Ass. U.K. 28, 333–344 (1949)Google Scholar
  20. Jørgensen, C. B.: Efficiency of particle retention and rate of water transport in undisturbed lamellibranchs. J. Cons. int. Explor. Mer 26, 94–116 (1960)Google Scholar
  21. Langton, R. W.: Synchrony in the digestive diverticula of Mytilus edulis L. J. mar. biol. Ass. U.K. 55, 221–230 (1975)Google Scholar
  22. Langton, R. W.: Digestive rhythms in the mussel Mytilus edulis. Mar. Biol. 41, 53–58 (1977)Google Scholar
  23. Langton, R. W. and P. A. Gabbott: The tidal rhythm of extracellular digestion and the response to feeding in Ostrea edulis. Mar. Biol. 24, 181–187 (1974)Google Scholar
  24. Lent, C. M.: Air-gaping by the ribbed mussel Modiolus demissus (Dillwyn): effects and adaptive significance. Biol. Bull. mar. biol. Lab. Woods Hole 134, 60–73 (1968)Google Scholar
  25. Lent, C. M.: Adaptations of the ribbed mussel Modiolus demissus (Dillwyn) to the intertidal habitat. Am. Zool. 9, 283–292 (1969)Google Scholar
  26. Loosanoff, V. L.: The effect of temperature upon shell movements of clams, Venus mercenaria (L.). Biol. Bull. mar. biol. Lab., Woods Hole 76, 171–182 (1939)Google Scholar
  27. Loosanoff, V. L.: Shell movements of the edible mussel Mytilus edulis in relation to temperature. Ecology 23, 231–234 (1942)Google Scholar
  28. Loosanoff, V. L. and C. A. Nameiko: Feeding of oysters in relation to tidal states and to periods of light and darkness. Biol. Bull. mar. biol. Lab., Woods Hole 90, 244–264 (1946)Google Scholar
  29. Mathers, N. F.: The effects of tidal currents on the rhythm of feeding and digestion in Pecten maximus L. J. exp. mar. Biol. Ecol. 24, 271–283 (1976)CrossRefGoogle Scholar
  30. Mathers, N. F., T. Smith and N. Collins: Monophasic and diphasic digestive cycles in Venerupis decussata and Chlamys varia. J. mollusc. Stud. 45, 68–81 (1979)Google Scholar
  31. McQuiston, R. W.: Cyclic activity in the digestive diverticula of Lasaea rubra (Montagu) (Bivalvia: Eulamellibranchia). Proc. malac. Soc. Lond. 38, 483–492 (1969)Google Scholar
  32. Morton, B. S.: Studies on the biology of Dreissena polymorpha Pall. II. Correlation of the rhythm of adductor activity, feeding, digestion and excretion. Proc. malac. Soc. Lond. 38, 401–414 (1969)Google Scholar
  33. Morton, B. S.: The rhythmical behaviour of Anodonta cygnea L. and Unio pictorum L. and its biological significance. Forma Functio 2, 110–120 (1970a)Google Scholar
  34. Morton, B. S.: The tidal rhythm of feeding and digestion in Cardium edule. J. mar. biol. Ass. U.K. 50, 499–512 (1970b)Google Scholar
  35. Morton, B. S.: The diurnal rhythm and tidal rhythm of feeding and digestion in Ostrea edulis. Biol. J. Linn. Soc. 3, 329–342 (1971)Google Scholar
  36. Morton, B. S.: A new theory of feeding and digestion in the filterfeeding Lamellibranchia. Malacologia 14, 63–79 (1973)Google Scholar
  37. Morton, B. S.: The tidal rhythm of feeding and digestion in the Pacific oyster Crassostrea gigas (Thunberg). J. exp. mar. Biol. Ecol. 26, 135–151 (1977)CrossRefGoogle Scholar
  38. Morton, B. S.: Feeding and digestion in Bivalvia. In: The Mollusca, Vol 5 (2). pp 65–147. Ed. by A. S. M. Saleuddin and K. Webster. New York: Academic Press 1983Google Scholar
  39. Morton, J. E.: The tidal rhythm and action of the digestive system of the lamellibranch Lasaea rubra. J. mar biol. Ass. U.K. 35, 563–586 (1956)Google Scholar
  40. Naylor, E.: Rhythmic behaviour and reproduction in marine animals. In: Adaptation to environment: essays on the physiology of marine animals, pp 393–429. Ed. by R. C. Newell. London: Butterworths 1976Google Scholar
  41. Naylor, E. and R. J. A. Atkinson: Pressure and the rhythmic behaviour of inshore animals. Symp. Soc. exp. Biol. 26, 395–415 (1972)PubMedGoogle Scholar
  42. Odiete, W. O.: The adductor rhythm of Scobicularia plana and its ganglionic control. J. mollusc. Stud. 42, 409–430 (1976)Google Scholar
  43. Owen, G.: Feeding and digestion in the Bivalvia. Adv. comp. Physiol. Biochem. 5, 1–35 (1974)PubMedGoogle Scholar
  44. Palmer, R. E.: Behavioural and rhythmic aspects of filtration in the bay scallop Argopecten irradians concentricus (Say) and the oyster Crassostrea virginica (Gmelin). J. exp. mar. Biol. Ecol. 45, 273–295 (1980)CrossRefGoogle Scholar
  45. Rao, K. P.: Tidal rhythmicity of rate of water propulsion in Mytilus, and its modifiability by transplantation. Biol. Bull. mar. biol. Lab., Woods Hole 106, 353–359 (1954)Google Scholar
  46. Richardson, C. A., D. J. Crisp and N. W. Runham: An endogenous rhythm of shell deposition in Cerastoderma edule. J. mar. biol. Ass. U.K. 60, 991–1004 (1980)Google Scholar
  47. Theede, H.: Experimentelle Untersuchungen über die Filtrierleistung der Miesmuschel Mytilus edulis L. Kieler Meeresforsch. 19, 20–41 (1963)Google Scholar
  48. Thompson, I.: Biological clocks and shell growth in bivalves. In: Growth rhythms and the history of the earth's rotation, pp 149–161. Ed. by G. D. Rosenberg and S. K. Runcorn. London: John Wiley & Sons 1975Google Scholar
  49. Thompson, R. J. and B. L. Bayne: Active metabolism associated with feeding in the mussel Mytilus edulis L. J. exp. mar. Biol. Ecol. 8, 111–212 (1972)CrossRefGoogle Scholar
  50. Trueman, E. R.: Activity and heart rate of bivalve molluscs in their natural habitat. Nature, Lond. 214, 832–833 (1967)Google Scholar
  51. Wenrich, D. H.: Notes on the reaction of bivalve mollusks to changes in light intensity. J. Anim. Behav. 4, 278–318 (1916)Google Scholar
  52. Winter, J. E.: Filter feeding and food utilization in Arctica islandica L. and Modiolus modiolus L. at different food concentrations. In: Marine food chains, pp 196–206. Ed. by J. H. Steele. Edinburgh: Oliver & Boyd 1970Google Scholar
  53. Winter, J. E.: The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous autosomatic recording apparatus. Mar. Biol. 22, 317–328 (1973)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. Ameyaw-Akumfi
    • 1
  • E. Naylor
    • 1
  1. 1.School of Animal BiologyUniversity College of North WalesBangorUK

Personalised recommendations