Advertisement

Marine Biology

, Volume 95, Issue 2, pp 231–235 | Cite as

Occurrence of lysozyme in the common cockle Cerastoderma edule and the effect of the tidal cycle on lysozyme activity

  • N. Conway
Article

Abstract

In 1983 a sample of cockles [Cerastoderma edule (L.)] was removed from the mid-tide level at Booterstown Strand, County Dublin, Ireland at 2-h intervals, for a period of 24 h. The gills, mantle and visceral mass tissues contained significant levels of lysozyme, with the gills containing the highest, weight-specific levels. A tidal rhythm of lysozyme activity in the gills, mantle and visceral mass was inversely related to the tidal cycle. The data were best described by a tidal curve shifted-5 hours out of phase, with maximum and minimum levels of activity occurring one hour after low and high tides, respectively. In marine bivalves, lysozyme may be involved in the extracellular digestion and absorption of bacteria during low tide. In this context the present use of bivalves as biological indicators of bacterial pollution is discussed.

Keywords

Bivalve Lysozyme Mass Tissue High Tide Tidal Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bamford, D. R. and R. Gingles: Absorption of sugars in the gill of the Japanese oyster, Crassostrea gigas. Comp. Biochem. Physiol. 49A, 637–646 (1974)CrossRefGoogle Scholar
  2. Bamford, D. R. and R. McCrea: Active absorption of neutral and basic amino acids by the gill of the common cockle, Cerastoderma edule. Comp. Biochem. Physiol. 50 A, 811–817 (1975)CrossRefGoogle Scholar
  3. Birkbeck, T. H. and J. G. McHenery: Degradation of bacteria by Mytilus edulis. Mar. Biol. 72, 7–15 (1982)Google Scholar
  4. Brehaut, R. N.: Ecology of rocky shores. In: Studies in biology 139, pp 44–51. London: Edward Arnold (1982)Google Scholar
  5. Ferguson, R. L. and P. Rublee: Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21, 141–145 (1976)Google Scholar
  6. Hardy, S. W., T. C. Fletcher and L. M. Gerrie: Factors in haemolymph of the mussel Mytilus edulis L., of possible significance as defence mechanisms. Biochem. Soc. Trans. 4, 473–475 (1976)PubMedGoogle Scholar
  7. Langton, R. W.: Digestive rhythms in the mussel Mytilus edulis Mar. Biol. 41, 53–58 (1977)Google Scholar
  8. Langton, R. W. and P. A. Gabbot: The tidal rhythm of extracellular digestion and the response to feeding in Ostrea edulis L. Mar. Biol. 24, 181–187 (1974)Google Scholar
  9. Loosanoff, V. L. and Nomejko, C. A.: Feeding of oysters in relation to tidal changes and to periods of light and darkness. Biol. Bull. mar. biol. Lab., Woods Hole 90, 244–267 (1946)Google Scholar
  10. Mathers, N. F.: Digestion and pH variation in two species of oysters. Proc. malacol. Soc. Lond. 41, 37–40 (1974)Google Scholar
  11. Mathers, N. F.: The effects of tidal currents on the rhythm of feeding and digestion in Pecten maximus L. J. exp. mar. Biol. Ecol. 24, 271–283 (1976)CrossRefGoogle Scholar
  12. McDade, J. E. and M. R. Tripp: Lysozyme in the hemolymph of the oyster, Crassostrea virginica. J. Invert. Pathol. 9, 531–535 (1967)Google Scholar
  13. McHenery, J. G., J. A. Allen and T. H. Birkbeck: Effect of tidal submersion on lysozyme in Mytilus edulis and Tellina tenuis. Mar. Biol. 75, 57–61 (1983)Google Scholar
  14. McHenery, J. G., J. A. Allen and T. H. Birkbeck: Distribution of lysozyme-like activity in 30 bivalve species. Comp. Biochem. Physiol. 85 B, 581–584 (1986)Google Scholar
  15. McHenery, J. G. and T. H. Birkbeck: Uptake and processing of cultured microorganisms by bivalves. J. exp. mar. Biol. Ecol. 90, 145–163 (1985)CrossRefGoogle Scholar
  16. McHenery, J. G., T. H. Birkbeck and J. A. Allen: The occurrence of lysozyme in marine bivalves. Comp. Biochem. Physiol. 63 B, 25–28 (1979)Google Scholar
  17. Moriarty, D. J. W.: Quantitative studies on bacteria and algae in the food of the mullet Mugil cephalus L. and the prawn Metapenaeus benettae (Racek and Dall). J. exp. mar. Biol. Ecol. 22, 131–143 (1976)CrossRefGoogle Scholar
  18. Morton, B. S.: Studies on the biology of Dreissena polymorpha. Pall. 2. Correlation of the rhythms of adductor activity, feeding, digestion and excretion. Proc. malacol. Soc. Lond. 38 401–415 (1969a)Google Scholar
  19. Morton, B. S.: Feeding and digestive rhythms in the Mollusca. Science, Chelsea 3, 23–29 (1969b)Google Scholar
  20. Morton, B. S.: The tidal rhythm and rhythm of feeding and digestion in Cardium edule. J. mar. biol. Ass. U.K. 50, 499–512 (1970)Google Scholar
  21. Morton, B. S.: The tidal rhythm of feeding and digestion in the Pacific oyster Crassostrea gigas. J. exp. mar. Biol. Ecol. 26, 135–151 (1977)CrossRefGoogle Scholar
  22. Morton, J. E.: The tidal rhythm and action of the digestive system of the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K. 35 563–586 (1956)Google Scholar
  23. Pasteels, J. J.: Pinocytose et arthrocytose par l'epithelium branchial de Mytilus edulis. Z. Zellforsch. Mikrosk. Anat. 92, 339–359 (1968)PubMedGoogle Scholar
  24. Pasteels, J. J.: Excretion de phosphatase acide par les cellules mucipares de la branchie de Mytilus edulis. Z. Zellforsch. Mikrosk. Anat. 102, 594–600 (1969)PubMedGoogle Scholar
  25. Pellegrino, C., A. Carli, M. P. Cevasco and M. I. Scasso: Mytilus galloprovincialis Lamark as an accumulator and indicator of telluric microorganisms in sea water. Rev. int. Oceanogr. Med. 47, 155–160 (1977)Google Scholar
  26. Pequignat, E.: A kinetic and autoradiographic study of the direct assimilation of amino acids and glucose by organs of the mussel Mytilus edulis. Mar. Biol. 19, 227–244 (1973)Google Scholar
  27. Plusquellac, A., M. Beucher and Y. Le Gal: Enumeration of the bacterial contamination of bivalves in monitoring the marine bacterial pollution. Mar. Pollut. Bull. 14, 260–263 (1983)CrossRefGoogle Scholar
  28. Prieur, D.: Experimental studies of trophic relationships between marine bacteria and bivalve molluscs. Kieler Meeresforsch. Sonderh. 5, pp 376–383. Proc. 15th, Eur. Mar. Biol. Symp. 1981Google Scholar
  29. Reiswig, H. M.: Bacteria as food for temperate-water marime sponges. Can. J. Zool. 53, 582–589 (1975)Google Scholar
  30. Rieper, M.: Bacteria as food for marine harpacticoid copepods. Mar. Biol. 45, 337–345 (1978)Google Scholar
  31. Sokal, R. R. and F. J. Rohlf: Biometry, 2nd ed., 776 pp. San Francisco: W. H. Freeman and Co. 1981Google Scholar
  32. Stewart, M. G.: Studies of amino acid absorption by tissues of the bivalve mollusc Mya arenaria. Ph. D. thesis, 212 pp. The Queens University of Belfast, Belfast, Ireland 1975Google Scholar
  33. Stewart, M. G.: The uptake and utilization of dissolved amino acids by the bivalve Mya arenaria (L.), pp 165–176. In: Proc. 12th Eur. Mar. Biol. Symp. Ed. by D. S. McLusky and A. J. Berry. Oxford: Pergamon Press, 1978Google Scholar
  34. Stwart, M. G.: Absorption of dissolved organic nutrients by marine invertebrates. Oceanogr. mar. biol. A. Rev. 17, 163–192 (1979)PubMedGoogle Scholar
  35. Stewart, M. G.: Kinetics of dipeptide uptake by the mussel Mytilus edulis. Comp. Biochem. Physiol. 69 A, 311–315 (1981)CrossRefGoogle Scholar
  36. Stewart, M. G. and D. R. Bamford: Kinetics of alanine uptake by the gills of the soft shelled clam Mya arenaria. Comp. Biochem. Physiol. 52 A, 67–74 (1975)Google Scholar
  37. Stewart, M. G. and D. R. Bamford: The effect of environmental factors on the absorption of amino acids by isolated gill tissue of the bivalve Mya arenaria (L.). J. exp. mar. Biol. Ecol. 24, 205–212 (1976)CrossRefGoogle Scholar
  38. Vahl, O.: Porosity of the gill, O2 consumption and pumping rate in Cardium edule (L.) (Bivalvia). Ophelia 10, 109–118 (1972)Google Scholar
  39. Winter, J. E.: A review of the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13 1–33 (1978)CrossRefGoogle Scholar
  40. Zobell, C. E. and C. B. Feltham: Bacteria as food for certain marine invertebrates. J. mar. Res. 1, 312–327 (1938)Google Scholar
  41. Zobell, C. E. and W. A. Landon: The bacterial nutrition of the California mussel. Proc. Soc. Exp. Biol. NY 36, 607–609 (1937)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • N. Conway
    • 1
  1. 1.Department of ZoologyTrinity College DublinDublin 2Ireland

Personalised recommendations