Advertisement

Marine Biology

, Volume 95, Issue 2, pp 221–230 | Cite as

Mass encystment of a planktonic oligotrich ciliate

  • P. C. Reid
Article

Abstract

Sediment traps were deployed in a 60 m water column near the Eddystone Lighthouse on the south west coast of England for one year from March 1984. In April, the traps collected the cysts of a planktonic ciliate with a flux of almost 35 000 m-2 d-1. The cysts were attributed to a planktonic oligotrich [provisionally identified as Strombidium crassulum (Leegard) Kahl], which was common in the water at the time. Identification was achieved through the discovery of the incipient formation of the cysts in preserved water samples and by the similarity of the morphology of the cysts with that of other oligotrichid ciliates. Attempts to prove the relationship by incubation have so far failed. The production of the cysts followed the main spring bloom of diatoms and coincided with a small bloom of autotrophic oligotrichs. In the traps, the total number and percentage of cysts with contents decreased rapidly after the encystment event. However, potentially viable cysts were still recorded in the plankton eleven months later, with minimum fluxes of 200 cysts m-2 d-1. Resuspension of bottom sediments by tides and storms ensured that a large population of cysts was always present in the water column during the winter, awaiting the right conditions to stimulate excystment and the initiation of a new motile population.

Keywords

Water Sample Water Column Large Population Bottom Sediment West Coast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anderson, D. M., D. W. Coats, M. A. Tyler: Encystment of the dinoflagellate Gyrodinium uncatenum: temperature and nutrient effects. J. Phycol. 21 200–206 (1985)Google Scholar
  2. Anderson, D. M., D. M. Kulis and B. J. Binder: Sexuality and cyst formation in the dinoflagellate Gonyaulax tamarensis: cyst yield in batch cultures. J. Phycol. 20, 418–425 (1984)Google Scholar
  3. Anderson, D. M. and D. Wall: Potential importance of benthic cysts of Gonyaulax tamarensis and G. excavata in initiating toxic dinoflagellate blooms. J. Phycol. 14, 224–234 (1978)Google Scholar
  4. Blackbourn, D. J.: The feeding biology of tintinnid protozoa and other inshore microzooplankton, 224 pp. Ph. D. thesis, University of British Columbia, Vancouver 1974Google Scholar
  5. Bloesch, J. and N. M. Burns: A critical review of sedimentation trap technique. Schweiz. Z. Hydrol. 42, 15–55 (1980)Google Scholar
  6. Burkill, P. H.: Ciliates and other microplankton components of a nearshore food-web: standing stocks and production processes. Annls Inst. océanogr., Paris (N.S.) 58 (S), 335–350 (1982)Google Scholar
  7. Capriulo, G. M. and E. J. Carpenter: Grazing by 35 to 202 μm micro-zooplankton in Long Island Sound. Mar. Biol. 56, 319–326 (1980)Google Scholar
  8. Corliss, J. O.: The ciliated protozoa, characterisation, classification and guide to the literature, 2nd ed. 455 pp. Oxford: Pergamon Press 1979Google Scholar
  9. Davies, J. M. and R. Payne: Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom. Mar. Biol. 78, 315–324 (1984)Google Scholar
  10. Davis, C. C.: Acanthostomella norvegica (Daday) in insular New-foundland waters, Canada (Protozoa: Tintinnina). Int. Revue ges. Hydrobiol. 70, 21–26 (1985)Google Scholar
  11. Fauré-Fremiet, E.: Le rythme de marée du Strombidium oculatum Grüber. Bull. biol. Fr. Belg. 82, 3–23 (1948)Google Scholar
  12. Fransz, H. G. and S. S. C. Gieskes: The unbalance of phytoplankton and copepods in the North Sea. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer. 183, 218–225 (1984)Google Scholar
  13. Gifford, D. J.: Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar. Ecol. Prog. Ser. 23, 257–267 (1985)Google Scholar
  14. Heinbokel, J. F. and J. R. Beers: Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52, 23–32 (1979)Google Scholar
  15. Hibberd, D. J.: Observations on the ultrastructure of the cryptomonad endosymbiont of the red-water ciliate Mesodinium rubrum. J. mar. biol. Ass. U.K. 57, 45–61 (1977)Google Scholar
  16. Maeda, M. and P. G. Carey: An illustrated guide to the species of the family Strombidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull. Ocean Res. Inst. Univ. Tokyo 19, 1–68 (1985)Google Scholar
  17. Paranjape, M.: Occurrence and significance of resting cysts in a hyaline tintinnid Helicostomella subulata (Ehr.) Jørgensen. J. exp. mar. Biol. Ecol. 48, 23–33 (1980)CrossRefGoogle Scholar
  18. Payne, R. and J. M. Davies: The Aberdeen sedimentation trap and its moorings. Scott. Fish. Res. Rep. 8, 1–11 (1977)Google Scholar
  19. Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace and R. W. Sanders: Protozoa in planktonic food webs. J. Protozool. 32, 409–415 (1985)Google Scholar
  20. Rassoulzadegan, F. et J. Gostan: Répartition des cilié pélagiques dans les eaux de Villefranche-sur-Mer. Remarques sur la dispersion du microzooplancton en mer et a l'intérieur des échantillons dénombrés par la méthode d'Utermöhl. Annls Inst. océanogr. Paris (N.S.) 52, 175–188 (1976)Google Scholar
  21. Reid, P. C.: Gonyaulacacean dinoflagellate cysts from the British Isles. Nova Hedwigia 25, 579–637 (1974)Google Scholar
  22. Reid, P. C.: Dinoflagellate cysts in the plankton. New Phytol. 80, 219–229 (1978)Google Scholar
  23. Reid, P. C. and G. T. Boalch: A new method for the identification of dinoflagellate cysts in plankton and sediment. J. Plankton Res. 9, 249–253 (1987)Google Scholar
  24. Reid, P. C. and A. W. G. John: Tintinnid cysts. J. mar. biol. Ass. U.K. 58, 551–557 (1978)Google Scholar
  25. Reid, P. C. and A. W. G. John: A possible relationship between chitinozoa and tintinnids. Rev. Paleobot. Palynol. 34, 251–262 (1981)CrossRefGoogle Scholar
  26. Reid, P. C. and A. W. G. John: Resting cysts in the ciliate class Polyhymenophorea: phylogenetic implications. J. Protozool. 30, 710–713 (1983)Google Scholar
  27. Revelante, N. and M. Gilmartin: Microzooplankton distribution in the northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoans. Oceanol. Acta 6, 407–415 (1983)Google Scholar
  28. Scott, J. M.: The feeding rates and efficiencies of a marine ciliate, Strombidium sp., grown under chemostat steady-state conditions. J. exp. mar. Biol. Ecol. 90, 81–95 (1985)Google Scholar
  29. Sieburth, J. McN.: Sea microbes, 491 pp. New York: Oxford University Press 1979Google Scholar
  30. Sorokin, Y. I.: Microheterotrophic organisms in marine ecosystems. In: Analysis of marine ecosystems, pp 293–342. Ed. by. A. R. Longhurst London: Academic Press 1981Google Scholar
  31. Stoecker, D. K., L. H. Davis and D. M. Anderson: Fine scale spatial correlations between planktonic ciliates and dinoflagellates. J. Plankton Res. 6, 829–842 (1984)Google Scholar
  32. Stoecker, D. (K.), L. H. Davis and A. Provan: Growth of Favella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro. Mar. Biol. 75, 293–302 (1983)Google Scholar
  33. Stoecker, D. (K.), R. R. L. Guillard and R. M. Kavee: Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. Biol. Bull. mar. biol. Lab., Woods Hole 160, 136–145 (1981)Google Scholar
  34. Taylor, G. T.: The role of pelagic heterotrophic protozoa in nutrient cycling: a review. Annls Inst. océanogr, Paris (N.S.) 58 (S), 227–241 (1982)Google Scholar
  35. Taylor, G. T., R. Iturriaga and C. W. Sullivan: Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter. Mar. Ecol. Prog. Ser. 23, 129–141 (1985)Google Scholar
  36. Tyler, M. A., D. W. Coats and D. M. Anderson: Encystment in a dynamic environment: deposition of dinoflagellate cysts by a frontal convergence. Mar. Ecol. Prog. Ser. 7, 163–178 (1982)Google Scholar
  37. Wall, D. and B. Dale: “Living fossils” in western Atlantic plankton. Nature, Lond. 211, 1025–1026 (1966)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. C. Reid
    • 1
  1. 1.Institute for Marine Environmental ResearchPlymouthEngland

Personalised recommendations