Advertisement

Marine Biology

, Volume 95, Issue 2, pp 217–220 | Cite as

Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis

  • T. Ogata
  • T. Ishimaru
  • M. Kodama
Article

Abstract

The effect of water temperature and light intensity on the growth rate and the toxicity of Protogonyaulax tamarensis was examined using a monoclonal culture isolated from Ofunato Bay, Japan in March, 1984. The growth rate decreased with the decrease of either light intensity or temperature. The amount of toxin produced increased concomitantly with the decrease of the growth rate. However, the increase of the toxicity under low growth rate was less remarkable when the growth rate was lowered by the decrease of light intensity. This indicates that photosynthesis plays an important role in the production of toxin in P. tamarensis.

Keywords

Japan Growth Rate Toxicity Water Temperature Light Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Boyer, G. L., J. J. Sullivan, R. J. Andersen, P. J. Harrison and F. J. R. Taylor. Toxin production in three isolates of Protogonyaulax sp. In: Toxic dinoflagellates, pp 281–286 Ed. by D. M. Anderson, A. W. White and D. G. Baden. New York, Amsterdam, Oxford: Elsevier 1985Google Scholar
  2. Fukazawa, N., T. Ishimaru, M. Takahashi and Y. Fujita: A mechanism of ‘red tide’ formation. I. Growth rate estimate by DCMU-induced fluorescence increase. Mar. Ecol. Prog. Ser. 3, 217–222 (1980)Google Scholar
  3. Glover, H., J. Beardall and I. Morris: Effects of environmental factors on photosynthesis patterns in Phaeodacylum tricornutum (Bacillariophyceae). I. Effect of nitrogen deficiency and light intensity. J. Phycol. 11, 424–429 (1975)Google Scholar
  4. Kobayashi, M. and Y. Shimizu: Gonyautoxin VIII, a cryptic precursor of paralytic shellfish poisons. J. C. S. Chem. Comm. 827–828 (1981)Google Scholar
  5. Kodama, M., Y. Fukuyo, T. Ogata, T. Kamiya and F. Matsuura. Comparison of toxicities of Protogonyaulax cells of various sizes. Bull. Japan. Soc. Sci. Fish. 48, 567–571 (1982)Google Scholar
  6. MacIsaac, J. J., G. S. Grunseich, H. E. Glover and C. M. Yentsch: Light and nutrient limitation in Gonyaulax excavata: nitrogen and carbon trace results. In: Toxic dinoflagellate blooms, pp 107–110. Ed. by D. L. Taylor and H. H. Seliger. New York, Amsterdam, Oxford: Elsevier North-Holland, 1979)Google Scholar
  7. Morris, I.: Nitrogen assmilation and protein synthesis. In: Algal physiology and biochemistry. Bot., Monogr. 10, Ch. 21, pp 583–635 Ed. by W. D. P. Stewart, Oxford, London, Edinburgh and Melbourne: Blackwell Scientific Publications 1974Google Scholar
  8. Ogata, T., M. Kodama, Y. Fukuyo, T. Inoue, H. Kamiya, F. Matsuura, K. Sekiguchi and S. Watanabe. The occurrence of Protogonyaulax spp. in Ofunato Bay, in association with the toxification of the scallop Patinopecten yessoensis. Bull. Japan. Soc. Sci. Fish. 48, 563–566 (1982)Google Scholar
  9. Oshima, Y. and T. Yasumoto: Analysis of toxins in cultured Gonyaulax excavata. In: Toxic dinoflagellate blooms, pp 377–380. Ed. by D. L. Taylor and H. H. Seliger. New York, Amsterdam, Oxford: Elsevier North-Holland 1979Google Scholar
  10. Oshima, Y., M. Machida, K. Sasaki, Y. Tamaoki and T. Yasumoto. Liquid chromatographic-fluorometric analysis of paralytic shellfish toxins. Agric. Biol. Chem. 48, 1707–1711 (1984)Google Scholar
  11. Prakash, A.: Growth and toxicity of a marine dinoflagellate, Gonyaulax tamarensis. J. Fish. Res. Bd Can. 24, 1589–1606 (1967)Google Scholar
  12. Prakash, A., J. C. Medcof A. D. and Tennant: Paralytic shellfish poisoning in eastern Canada. Bull. Fish. Res. Bd Can. 177, 1–87 (1971)Google Scholar
  13. Proctor, N. H., S. L. Chan and A. J. Trevor: Production of saxitoxin by cultures of Gonyaulax catenello. Toxicon 13, 1–9 (1975)PubMedGoogle Scholar
  14. Shimizu, Y., M. Norte, A. Hori, A. Genenah and M. Kobayashi: Biosynthesis of saxitoxin analogues: the unexpected pathway. J. Am. Chem. Soc. 106, 6433–6434 (1984)Google Scholar
  15. Singh, H. T., Y. Oshima and T. Yasumoto: Growth and toxicity of Protogonyaulax tamarensis in axenic culture. Bull. Japan. Soc. Sci. Fish. 48, 1341–1343 (1982)Google Scholar
  16. Sommer, H. and K. F. Meyer: Paralytic shellfish poisoning. Arch. Pathol. 24, 560–598 (1937)Google Scholar
  17. Syrett, P. J.: Nitrogen metabolism of microalgae. In: Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. Bull. 210, 182–210. 1981Google Scholar
  18. White, A. W.: Salinity effects on growth and toxin content of Gonyaulax excavata, a marine dinoflagellate causing paralytic shellfish poisoning. J. Phycol. 14, 475–479 (1978)Google Scholar
  19. White, A. W. and L. Maranda. Paralytic toxins in the dinolagellate Gonyaulax exclavata and in shellfish. J. Fish. Res. Bd Can. 35, 397–402 (1978)Google Scholar
  20. Yanagita, T. (Ed.): Microbiology, Vol. 2. Growth and growth inhibition (Biseibutsukagaku Vol. 2. Seichou, Zoushoku, Zoushokusogai) (in Japanese), 578 pp. Tokyo: Japan Scientific Societies Press 1981Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • T. Ogata
    • 1
  • T. Ishimaru
    • 2
  • M. Kodama
    • 1
  1. 1.Laboratory of Marine Biological Chemistry, School of Fisheries SciencesKitasato UniversitySanriku, IwateJapan
  2. 2.Ocean Research InstituteUniversity of TokyoNakano, TokyoJapan

Personalised recommendations