Marine Biology

, Volume 95, Issue 2, pp 173–182 | Cite as

Nitrogen exchange between a southeastern USA salt marsh ecosystem and the coastal ocean

  • G. J. Whiting
  • H. N. McKellarJr.
  • B. Kjerfve
  • J. D. Spurrier


The salt marsh ecosystem at North Inlet, South Carolina, USA consistently exported dissolved inorganic nitrogen via tidal exchange with the coastal Atlantic Ocean. Concentrations centrations of NH 4 + and NO 3 - +NO 2 - displayed distinct tidal patterns with rising values during ebb flow. These patterns suggest the importance of biogeochemical processes in the flux of material from the salt marsh. NH 4 + export peaked during the summer (15 to 20 mg m-2 tide-1) during a net balance of tidal water exchange. Remineralization of NH 4 + within the salt marsh system appears to be contributing to the estimated annual net export of bout 4.7 g NH 4 + -N m-2 yr-1. NO 3 - +NO 2 - exports were higher in the fall and winter of 1979 (2 to 4 mg N m-2 tide-1). The winter export coincided with a considerable net export of water with no distinctive concentration patterns, suggesting a simple advective export. However, the fall peak of NO 3 - +NO 2 - export occurred during a period of net water balance in tidal exchange and an insignificant freshwater input from the western, forested boundary. During the summer and fall, tidal concentration patterns were particularly apparent, suggesting that nitrification within the salt marsh system was contributing to the estimated annual net export of ca 0.6 g NO 3 - +NO 2 - -N m-2 yr-1.


Salt Marsh Concentration Pattern Tidal Water Tidal Exchange Nitrogen Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Axelrad, D. M.: Nutrient flux through the salt marsh ecosystem, 134 pp. Ph.D. thesis, College of William and Mary, Williamsburg, VA 1974Google Scholar
  2. Carnahan, B., H. A. Luther and J. O. Wilkes: Applied numerical methods, 604 pp. New York: John Wiley and Sons 1969Google Scholar
  3. Chrzanowski, T. H., L. H. Stevenson and J. D. Spurrier: Transport of particulate organic carbon through the North Inlet ecosystem. Mar. Ecol. Prog. Ser. 7, 231–245 (1982a)Google Scholar
  4. Chrzanowski, T. H., L. H. Stevenson and J. D. Spurrier: Transport of microbial biomass through the North Inlet ecosystem. Microb. Ecol. 8, 139–156 (1982b)Google Scholar
  5. Chrzanowski, T. H., L. H. Stevenson and J. D. Spurrier: Transport of dissolved organic carbon through a major creek of the North Inlet ecosystem. Mar. Ecol. Prog. Ser. 13, 167–174 (1983)Google Scholar
  6. Daly, M. A. and A. C. Mathieson: Nutrient fluxes within a small north temperate salt marsh. Mar. Biol. 61, 337–344 (1981)Google Scholar
  7. Dame, R. F.: The flux of floating macrodetritus in the North Inlet estuarine ecosystem. Estuar. cstl Shelf Sci. 15, 337–344 (1981)Google Scholar
  8. Dankers, N., M. Binsbergen, K. Zegers, R. Laane and M. R. van der Loeff: Transportation of water, particulate and dissolved organic and inorganic matter between a salt marsh and the Ems-Dollard estuary, the Netherlands. Estuar. cstl Shelf Sci. 19, 143–165 (1984)Google Scholar
  9. D'Elia, C. F., P. A. Steudler and N. Corwin: Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22, 760–764 (1977)Google Scholar
  10. Gardner, L. R.: Runoff from an intertidal marsh during tidal exposure-recession curves and chemical characteristics. Limnol. Oceanogr. 20, 81–89 (1975)Google Scholar
  11. Gilbert, P. and T. Loder: Automated analysis of nutrients in seawater. Technical report WHOI-11-41, 46 pp. Woods Hole, MA: Woods Hole Oceangr. Inst. 1977Google Scholar
  12. Haines, E. B.: Nitrogen pools in Georgia coastal waters. Estuaries 2, 34–39 (1979)Google Scholar
  13. Hansen, D. V. and M. Rattray, Jr.: New dimensions in estuary classification. Limnol. Oceanogr. 11, 319–326 (1966)Google Scholar
  14. Heinle, D. L. and D. A. Flemer: Flows of materials between poorly flooded tidal marshes and an estuary. Mar. Biol. 35, 359–373 (1976)Google Scholar
  15. Hopkinson, C. S. and J. P. Schubauer: Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid Spartina alterniflora. Ecology 65, 961–969 (1984)Google Scholar
  16. Imberger, J., T. Berman, R. R. Christian, E. B. Sherr, D. E. Whitney, L. R. Pomeroy, R. G. Wiegert and W. J. Wiebe: The influence of water motion on the distribution and transport of materials in a salt marsh estuary. Limnol. Oceanogr. 28, 201–214 (1983)Google Scholar
  17. Jordan, T. E., D. L. Correll and D. F. Whigham: Nutrient flux in the Rhode River: tidal exchange of nutrients by brackish marshes. Estuar. cstl Shelf Sci. 17, 651–667 (1983)Google Scholar
  18. Kjerfve, B.: Hydrographic considerations in estuarine outwelling studies: an example and definitions. In: Productivity of the mangrove ecosystem: management implications, pp 37–47. Ed. by Ong Jin Eong and Gong Wooi Khoon. Penang, Malaysia: Universiti Sains Malaysia 1984Google Scholar
  19. Kjerfve, B., J. E. Greer and R. L. Crout: Low frequency response of estuarine sea level to non-local forcing. In: Estuarine interactions, pp 497–513. Ed. by M. L. Wilsy. London: Academic Press 1978Google Scholar
  20. Kjerfve, B. and H. N. McKellar: Time series measurements of estuarine material fluxes. In: Estuarine perspectives, pp 341–357. Ed. by V. S. Kennedy, New York: Academic Press 1980Google Scholar
  21. Kjerfve, B. and J. A. Proehl: Velocity variability in a cross-section of a well-mixed estuary. J. mar. Res. 37, 409–418 (1979)Google Scholar
  22. Kjerfve, B., L. H. Stevenson, J. A. Proehl, T. H. Chrzanowski and W. M. Kitchens: Estimation of material fluxes in an estuarine cross section. A critical analysis of spatial measurement density and errors. Limnol. Oceanogr. 26, 325–335 (1981)Google Scholar
  23. Miller, J. L. and L. R. Gardner: Sheet flow in a salt-marsh basin, North Inlet South Carolina. Estuaries 4, 234–237 (1981)Google Scholar
  24. Nixon, S. W.: Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In: Estuarine and wetland processes, pp 437–525. Ed. by P. Hamilton and K. B. MacDonald. New York: Plenum Press 1980Google Scholar
  25. Odum, E. P.: The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling, and detritus-based food chains. In: Estuarine perspectives, pp 485–495. Ed. by V. S. Kennedy. New York: Academic Press 1980Google Scholar
  26. Odum, W. E., J. S. Fisher and J. C. Pickral: Factors controlling the flux of particulate organic carbon from estuarine wetlands. In: Ecological processes in coastal and marine systems, pp 69–80. Ed. by R. J. Livingston. New York: Plenum Press 1979Google Scholar
  27. Patrick, W. H. Jr. and R. D. Delaune: Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuar. cstl mar. Sci. 4, 59–64 (1976)Google Scholar
  28. Ryther, J. H. and W. M. Dunstan: Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science, Wash. D.C. 171, 1008–1013 (1971)Google Scholar
  29. SAS Institute Inc.: SAS user's guide: statistics, 1982 ed., 584 pp. Cary, NC: SAS Institute Inc. 1982Google Scholar
  30. Solorzano, L.: Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969)Google Scholar
  31. Valiela, I. and J. M. Teal: Nutrient limitation in salt marsh vegetation. In: Ecology of halophytes, pp 547–563. Ed. by R. J. Reimold and W. H. Green. New York: Academic Press 1974Google Scholar
  32. Valiela, I. and J. M. Teal: The nitrogen budget of a salt marsh ecosystem. Nature, Lond. 280, 652–656 (1979)Google Scholar
  33. Valiela, I., J. M., Teal, S., Volkman, D., Shafer and E. J., Carpenter: Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and groundwater. Limnol. Oceanogr. 23, 798–812 (1978)Google Scholar
  34. Whiting, G. J.: Nitrogen cycling in salt marshes: tidal and gaseous exchanges, 211 pp. Ph.D. thesis, University of South Carolina, Columbia, SC 1985Google Scholar
  35. Whiting, G. J., H. N. McKellar Jr., B., Kjerfve and J. D. Spurrier: Sampling and computational design of nutrient flux from a southeastern U.S. saltmarsh. Estuar. cstl Shelf Sci. 21, 273–286 (1985)Google Scholar
  36. Wolaver, T. G., W. Johnson and M. Marozas: Nitrogen and phosphorus concentrations within North Inlet, South Carolinaspeculation as to sources and sinks. Estuar. cstl Shelf Sci. 19, 243–255 (1984)Google Scholar
  37. Woodwell, G. M., C. A. S. Hall, D. E. Whitney and R. A. Houghton: The Flax Pond ecosystem study: exchanges of inorganic nitrogen between an estuarine marsh and Long Island Sound. Ecology 60, 695–702 (1979)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. J. Whiting
    • 2
    • 1
  • H. N. McKellarJr.
    • 3
    • 1
  • B. Kjerfve
    • 4
    • 1
  • J. D. Spurrier
    • 5
    • 1
  1. 1.Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Biology, Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaColumbiaUSA
  3. 3.Department of Environmental Health Science, the Marine Science Program, Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaColumbiaUSA
  4. 4.Department of Geology and the Marine Science Program, Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaColumbiaUSA
  5. 5.Department of Statistics, Belle W. Baruch Institute for Marine Biology and Coastal ResearchUniversity of South CarolinaColumbiaUSA

Personalised recommendations