Skip to main content
Log in

Biological properties and mode of action of clavams

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The clavams valclavam and hydroxyethylclavam were both bacteriostatic and fungistatic. The molecular basis for growth inhibition of Escherichia coli was a non-competitive inhibition of homoserine-O-succinyltransferase (EC 2.3.1.46), thus blocking methionine biosynthesis. Eucaryotes such as Saccharomyces cerevisiae were inhibited by a different mode of action. Instead of interfering with methionine biosynthesis, the clavams inhibited the formation of RNA in living cells, although the RNA-polymerases of isolated yeast nuclei were not inhibited. The action of valclavam on E. coli was dependent on functional peptide transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CoA:

coenzyme A

mic:

mimimal inhibitory concentration

SAM:

S-adenosylmethionine

TCA:

trichloroacetic acid Offprint requests to: H. Zähner

References

  • Brown D, Evans JR, Fletton RA (1979) Structures of three novel β-lactams isolated from Streptomyces clavuligerus. J Chem Soc Chem Commun 1979:282–283

    Google Scholar 

  • Dähn U, Hagenmaier H, Höhne H, König H, Wolf G, Zähner H (1976) Nikkomycin, ein neuer Hemmstoff der Chitinsynthase bei Pilzen. Arch Microbiol 107:142–160

    Google Scholar 

  • Davis BP, Mingioli ES (1950) Mutants of Escherichia coli requiring methionine or vitamine B12. J Bacteriol 60:17–28

    PubMed  Google Scholar 

  • Delaney SF, Dickson A, Carr NG (1973) The control of homoserine-O-transsuccinylase in a methionine requiring mutant of the blue-greenaalga Anacystis nidulans. J Gen Microbiol 79:89–94

    Google Scholar 

  • Diddens H, Dorgerloh M, Zähner H (1979) Metabolic products of microorganisms 176: On the transport of small peptide antibiotics in bacteria. J Antibiotics 32:87–90

    Google Scholar 

  • Duffus JH (1974) the isolation of yeast nucleic and methods to study their properties. Meth Cell Biol 12:77–97

    Google Scholar 

  • Eikhom TS, Jonsen J, Laland S, Refsvik T (1963) On the biosynthesis of gramicidin S. Biochem Biophys Acta 76:465–468

    PubMed  Google Scholar 

  • Guggenheim S (1971) β-cystathionase (Salmonella). Meth Enzymol 17b:439–422

    Google Scholar 

  • Hamamoto T, Uozumi T, Beppu T (1985) Leptomycins A and B, new antifungal antibiotics III. Mode of action of Leptomycin B on Schizosaccharomyces pombe. J Antibiotics 38:1573–1580

    Google Scholar 

  • Hopwood D (1967) Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31:373–403

    PubMed  Google Scholar 

  • Hütter R, Keller-Schierlein W, Nüesch J, Zähner H (1965) Stoffwechselprodukte von Mikroorganismen. 48. Mitteilung. Scopamycine. Arch Microbiol 51:1–8

    Google Scholar 

  • Jerome JF, Jaehning JA (1986) mRNA transcription in nuclei isolated from Saccharomyces cerevisiae. Mol Cell Biol 6:1633–1639

    PubMed  Google Scholar 

  • Kaplan M, Guggenheim S (1971) Cystathionine-gamma-synthase (Salmonella). Meth Enzymol 17b:425–433

    Google Scholar 

  • King HD, Langhaerig J, Sanglier JJ (1986) Clavamycins: New clavam antibiotics from two variants of Streptomyces hygroscopicus. I. Taxonomy of the producing organisms, fermentation and biological activities. J Antibiotics 39:510–515

    Google Scholar 

  • Lee LW, Ravel JM, Shive W (1966) Multimetabolite control of a biosynthetic pathway by sequential metabolites. J Biol Chem 241:5479–5480

    PubMed  Google Scholar 

  • May R (1971) Isolationsbedingungen für Zellkerne aus Hefeprotoplasten. Z Allg Mikrobiol 11:131–142

    PubMed  Google Scholar 

  • McCarthy PJ, Troke PF, Gull K (1985) Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. J Gen Microbiol 131:775–778

    PubMed  Google Scholar 

  • Mitchson JM (1970) Physiological and cytological methods for Schizosaccharomyces pombe. Meth Cell Physiol 4:131–165

    Google Scholar 

  • Moneton P, Sarthou P, Le Goffic F (1986) Role of nitrogen source in peptide transport in Saccharomyces cerevisiae. FEMS Letters 36:95–98

    Google Scholar 

  • Müller JL, Toome V, Pruess DL, Blount JF, Weigele M (1983) Ro 22-5417. A new clavam antibiotic from Streptomyces clavuligerus. III. Absolute stereochemistry. J Antibiotics 36:217–225

    Google Scholar 

  • Onishi H, McCance ME, Gibbons NE (1965) A synthetic medium for extremely halophilic bacteria. Can J Microbiol 11:365–373

    PubMed  Google Scholar 

  • Peter H, Rabenhorst J, Röhl F, Zähner H (1985) Valclavam An antifungal β-lactam antibiotic. In: Ishigami J (ed) Recent advances in chemotherapy. Antimicrobial section. University of Tokyo Press, pp 237–238

  • Peter H, Zähner H (1985) Clavam compounds. Patent Ger Offen 3427651

  • Payne JW, Gilvarg C (1978) Transport of peptides in bacteria. In: Rosen BP (ed) Bacterial transport. Plenum, New York, pp 325–383

    Google Scholar 

  • Rabenhorst J (1986) Valclavam, ein antifungisches β-Lactam. Studien zur Fermentation, Isolierung, Biogenese und der biologischen Wirkung. Dissertation, Universität Tübingen

  • Reading C, Cole M (1977) Clavulanic acid: A β-lactamase inhibiting β-lactam from Streptomyces clavuligerus. Antim Agents Chemoth 11:852–857

    Google Scholar 

  • Wanning M (1980) Hydroxyethylclavam und andere Antibiotica aus Streptomyces antibioticus Tü 1718. Dissertation, Universität Tübingen

  • Wanning M, Zähner H, Krone B, Zeeck A (1981) Ein neues antifungisches β-lactam-Antibioticum der Clavam-Reihe. Tetrah Letters 22:2539–2540

    Google Scholar 

  • Yadan JC, Gonneau M, Sarthou P, Le Goffic F (1984) Sensitivity to nikkomycin Z in Candida albicans: Role of peptide permeases. J Bacteriol 160:884–888

    PubMed  Google Scholar 

  • Zähner H, Maas WK (1972) Biology of antibiotics. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Metabolic products of microorganisms 241 (Metabolic products of microorganisms, 240. Rohr J, Zeeck A (1987) Urdamycins, new angucycline antibiotic form Streptomyces fradiae. II. Structural studies of urdamycin B to F. J Antibiotics, in press

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röhl, F., Rabenhorst, J. & Zähner, H. Biological properties and mode of action of clavams. Arch. Microbiol. 147, 315–320 (1987). https://doi.org/10.1007/BF00406126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406126

Key words

Navigation