Marine Biology

, Volume 43, Issue 3, pp 247–256 | Cite as

Diel cycles of expansion and contraction in coral reef anthozoans

  • K. P. Sebens
  • K. DeRiemer


Diel patterns of expansion and contraction are widespread in coral reef anthozoans, yet no theory adequately explains this behavior. We have observed a wide variety of behavior patterns in 14 sea anemone species at 9 sites along the Caribbean coast. The distribution of zooxanthellae in anemone tissues was quantified by sectioning preserved specimens and calculating zooxanthella density in the endoderm. We show that polyp structures containing dense populations of zooxanthellae respond positively to light (expansion, positive orientation) and those with few or no zooxanthellae respond negatively (contraction, negative orientation). Structures capable of prey capture, feeding tentacles, are expanded at night when prey is available. Structures adapted for photosynthesis, auxiliary structures of the column and tentacles with dense zooxanthellae, are expanded during the day. Such independent reactions of structures acting as functional units for photosynthesis and/or prey capture combine to give the observed variety of behavior patterns. We hypothesize that the need to conserve limiting nutrients and energy could be the ultimate cause of expansion and contraction rhythms in coral reef anthozoams.


Photosynthesis Coral Reef Behavior Pattern Prey Capture Positive Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abel, E.: Rhythmik bei Anthozoen. Neptun 12, 331–333 (1963)Google Scholar
  2. Beattie, C.W.: Respiratory adjustments of an estuarine coelenterate to abnormal levels of environmental phosphate and oxygen. Comp. Biochem. Physiol. 40B, 907–916 (1971)Google Scholar
  3. Bohn, G.: La persistance du rythme des marées chez l'Actinia equina. C. r. Séanc. Biol. 61, 661–663 (1906)Google Scholar
  4. — Le rythme nycthéméral chez les actinies. C. r. Séanc. Biol. 62, 473–476 (1907)Google Scholar
  5. —: De l'influence de l'oxygène dissous sur les réactions des actinies. C. r. Séanc. Biol. 64, 1087–1089 (1908a)Google Scholar
  6. —: Les facteurs de la rétraction et de l'épanouissment des actinies. C. r. Séanc. Biol. 64, 1163–1166 (1908b)Google Scholar
  7. —: L'épanouissement des actinies dans les milieux asphyxiques. C. r. Séanc. Biol. 65, 317–320 (1908c)Google Scholar
  8. Brafield, A.E. and G. Chapman: The oxygen consumption of Pennatula rubra Ellis and some other anthozoans. Z. vergl. Physiol. 50, 363–380 (1965)Google Scholar
  9. Cates, N. and J.J.A. McLaughlin: Differences of ammonia metabolism in symbiotic and aposymbiotic Condylactis and Cassiopea spp. J. exp. mar. Biol. Ecol. 21, 1–5 (1976)CrossRefGoogle Scholar
  10. Cotte, J.: Sur le phototropisme des actinies. C. r. Séanc. Biol. 58, 188–190 (1921)Google Scholar
  11. Duchassaing de Fonbressin, P.: Animaux radiares des Antilles, Paris: 1850Google Scholar
  12. Duchassaing, P.A., et J. Michelotti: Mémoire sur les coralliaires des Antilles. Mémorie Accad. Sci. Torino 19, 279–365 (1861)Google Scholar
  13. —— Supplement aux mémoire sur les coralliaires des Antilles. Mémorie Accad. Sci. Torino 23, 97–206 (1866)Google Scholar
  14. Duerden, J.E.: The Actiniarian family Aliciidae. Ann. Mag. Nat. Hist., London (6) 20, 1–15 (1897)Google Scholar
  15. Ellis, J.: An account of Actinia sociata. Phil. Trans. R. Soc. 57, 428–437 (1967)Google Scholar
  16. Emery, A.R.: Preliminary observations on coral reef plankton. Limnol. Oceanogr. 13, 293–303 (1968)Google Scholar
  17. Fishelson, L.: Littoral fauna of the Red Sea: the population of non-scleractinian anthozoans of shallow waters of the Red Sea (Eilat). Mar. Biol. 6, 106–116 (1970)Google Scholar
  18. Franzisket, L.: Die stoffwechsel-Intensität der Riffcorallen und ihre ökologische, phylogenetische und soziologische Bedeutung. Z. vergl. Physiol. 49, 91–113 (1964)Google Scholar
  19. Gladfelter, W.D.: Sea anemone with zooxanthellae: simultaneous contraction and expansion in response to changing light intensity. Science, N.Y. 189, 570–571 (1975)Google Scholar
  20. Glynn, P.W.: Aspects of the ecology of coral reefs in the western Atlantic region. In: The geology and biology of coral reefs, vol. 2. pp 271–324. Ed. by O.A. Jones and R. Endean. New York: Academic Press 1973Google Scholar
  21. — and R.H. Stewart: Distribution of coral reefs in the Pearl Islands (Gulf of Panamá) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379 (1973)Google Scholar
  22. Johannes, R.E., S.L. Coles and N.T. Kuenzel: The role of zooplankton in the nutrition of some scleractinian corals. Limol. Oceanogr. 15, 579–586 (1970)Google Scholar
  23. — and Project Symbios Team: The metabolism of some coral reef communities: a team study of nutrient and energy flux at Eniwetok. BioSci. 22, 541–543 (1972)Google Scholar
  24. Kanwisher, J.W. and S.A. Wainwright: Oxygen balance in some reef corals. Biol. Bull. mar. biol. Lab., Woods Hole 133, 378–390 (1967)Google Scholar
  25. Kawaguti, S.: Ammonium metabolism of the reef corals. Biol. J. Okayama Univ. 1, 171–176 (1953)Google Scholar
  26. —: Effects of light and ammonium on the expansion of polyps in the reef corals. Biol. J. Okayama Univ. 2, 45–50 (1954)Google Scholar
  27. Kinzie, R.A.: The zonation of West Indian gorgonians. Bull. mar. Sci. 23, 93–155 (1973)Google Scholar
  28. Leseur, C.A.: Observations on several species of Actinia. J. Acad. nat. Sci. Philad. 1 (1817)Google Scholar
  29. Lewis, D.H. and D.C. Smith: The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proc. R. Soc. (Ser. B) 171, 565–566 (1971)Google Scholar
  30. Lewis, J.B. and W.S. Price: Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool., Lond. 176, 527–544 (1975)Google Scholar
  31. Mori, S.: Influence of environmental and physiological factors on the daily rhythmic activity of a sea-pen. Cold Spring Harb. Symp. quant. Biol. 25, 333–344 (1960)PubMedGoogle Scholar
  32. Muscatine, L.: Nutrition of corals. In: The geology and biology of coral reefs, Vol. 2. pp 77–115. Ed. by O.A. Jones and R. Endean. New York: Academic Press 1973Google Scholar
  33. —: Endosymbiosis of cnidarians and algae. In: Coelenterate biology. pp 359–395. Ed. by L. Muscatine and H.M. Lenhoff. New York: Academic Press 1974Google Scholar
  34. —: The role of zooxanthellae in the biology of reef-building corals. In: Reef Biogenesis Symposium Abstracts, p. 1. Townsville, Queensland, Australia: Australian Institute of Marine Science 1975Google Scholar
  35. Odum, H.T. and E.P. Odum: Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955)Google Scholar
  36. Pearse, V.B.: Modifications of sea anemone behavior by symbiotic zooxanthellae: expansion and contraction. Biol. Bull. mar. biol. Lab., Woods Hole 147, 641–651 (1974)Google Scholar
  37. Pieron, H.: De l'influence de l'oxygène dissous sur le comportement des invertebres marins. III. Des rhythmes engendres par une variation periodique de la teneur en oxygène. C. r. Séanc. Soc. Biol. 64, 1020–1022 (1908)Google Scholar
  38. Porter, J.W.: Zooplankton feeding by the Caribbean bean reef-building coral Montastrea cavernosa. Proc. int. Symp. coral Reefs 1 (1974). (Brisbane: Great Barrier Reef Committee)Google Scholar
  39. Randall, J.E.: Food habits of reef fishes of the West Indies. Stud. trop. Oceanogr., Miami. 5, 665–847 (1967)Google Scholar
  40. Roffmann, B.: Patterns of oxygen exchange in some Pacific corals. Comp. Biochem. Physiol. 27, 405–418 (1968)CrossRefGoogle Scholar
  41. Sassaman, C. and C.P. Mangum: Adaptations to environmental oxygen levels in infaunal and epifaunal sea anemones. Biol. Bull. mar. biol. Lab., Woods Hole 143, 657–678 (1972)Google Scholar
  42. ——: Relationship between aerobic and anaerobic metabolism in estuarine anemones. Comp. Biochem. Physiol. 44A, 1313–1319 (1973)Google Scholar
  43. ——: Gas exchange in a cerianthid. J. exp. Zool. 188, 297–306 (1974)PubMedGoogle Scholar
  44. Stephens, G.C.: Uptake of organic matter by aquatic invertebrates. I. Uptake of glucose by the solitary coral Fungia scutaria. Biol. Bull. mar. biol. Lab., Woods Hole 123, 648–659 (1962)Google Scholar
  45. —: Dissolved organic material as a nutritional source for marine and estuarine invertebrates. In: Estuaries, pp 367–373. Ed. by G.H. Lauff. Washington, D.C.: American Association for the Advancement of Science 1967 (Publs. Am. Ass. Advmt Sci. No. 83)Google Scholar
  46. Taylor, D.L.: Effects of nitrogenous compounds on algal symbiont metabolism, and their role in skeletogenesis in hermatypic corals. In: Abstracts of Symposia and contributed papers, Western Society of Naturalists, p. 32, 56th annual meeting, Dec. 1975. San Francisco, Calif.; Western Society of Naturalists 1975Google Scholar
  47. Thomas, W.H.: Phytoplankton nutrient enrichment experiments off Baja California and in the eastern equatorial Pacific Ocean. J. Fish. Res. Bd Can. 26, 1133–1145 (1969)Google Scholar
  48. —: On nitrogen deficiency in tropical Pacific Ocean phytoplankton. Photosynthetic parameters in poor and rich waters. Limnol. Oceanogr. 15, 380–385 (1970a)Google Scholar
  49. —: Effect of ammonium and nitrate concentration on chlorophyll increases in natural tropical Pacific phytoplankton populations. Limnol. Oceanogr. 15, 386–394 (1970b)Google Scholar
  50. — and R.W. Owen, Jr.: Estimating phytoplankton production from ammonia and chlorophyll concentrations in nutrient-poor water of the eastern tropical Pacific Ocean. Fish. Bull. U.S. 69, 87–92 (1971)Google Scholar
  51. Wainwright, S.A.: Diurnal activity of hermatypic gorgonians. Nature, Lond. 216, p. 1941 (1967)Google Scholar
  52. Weinland, C.D.F.: Über Inselbildung durch Korallen. Württ. Naturh. Jahresheft 16 (1860)Google Scholar
  53. Wilson, H.V.: On a new Actinia, Hoplophoria coralligens. Johns Hopkins Univ. Stud. Biol. 4, 379–387 (1890)Google Scholar
  54. Zahl, P.A. and J.J.A. McLaughlin: Studies on marine biology. IV. On the role of algal cells in the tissues of marine invertebrates. J. Protozool. 6, 344–352 (1959)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • K. P. Sebens
    • 1
  • K. DeRiemer
    • 1
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA

Personalised recommendations