Skip to main content
Log in

Improved fracture toughness of ultrahigh strength steel through control of non-metallic inclusions

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, ultrahigh-strength steels, which can be employed successfully at yield strengths of 1400 MPa or higher, have been used increasingly for critical structural applications in aircraft and aerospace vehicles. Most recently, there has been increased demand, however, for ultrahigh-strength steel with superior plane-strain fracture toughness, K IC, and for the steels suitable for large-sized structural applications; isotropy regarding the property has especially been required. One potential solution to this problem is to control nonmetallic inclusions of the steels. This review concentrates on recent topics concerning improved K IC of ultrahigh-strength steels, i.e. low-alloy and highly alloyed secondary hardening steels, through control of non-metallic inclusions. The major factors controlling the property are discussed for each of the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Hall, Met. Prog. 87 (1965) 178.

    Google Scholar 

  2. W. M. Garrison Jr, J. Metals 42 (1990) 20.

    CAS  Google Scholar 

  3. V. F. Zackay, E. R. Parker, R. D. Goolsby and W. E. Wood, Nature Phys. Sci. 69 (1972) 236.

    Google Scholar 

  4. G. Klark, R. O. Ritchie and J. F. Knott, ibid. 239 (1972) 104.

    Article  Google Scholar 

  5. R. O. Ritchie and J. F. Knott, Metall. Trans. 5 (1974) 782.

    Article  CAS  Google Scholar 

  6. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay and E. R. Parker, ibid. 5 (1974) 1663.

    Article  CAS  Google Scholar 

  7. W. E. Wood, Engng Fract. Mech. 7 (1975) 219.

    Article  CAS  Google Scholar 

  8. E. R. Parker and V. F. Zackay, ibid. 7 (1975) 371.

    Article  CAS  Google Scholar 

  9. R. O. Ritchie, B. Francis and W. L. Siever, Metall. Trans. 7A (1976) 831.

    Article  CAS  Google Scholar 

  10. W. G. Ferguson, N. E. Clark and B. R. Watson, Met. Technol. 208 (1976) 3.

    Google Scholar 

  11. W. E. Wood, Metall. Trans. 8A (1977) 1195.

    Article  CAS  Google Scholar 

  12. R. O. Ritchie, B. Francis and W. L. Server, ibid. 8A (1977) 1197.

    Article  CAS  Google Scholar 

  13. J. L. Youngblood and M. Raghavan, ibid. 8A (1977) 1439.

    Article  CAS  Google Scholar 

  14. D. S. McDamaid, Met. Technol. 5 (1978) 7.

    Article  Google Scholar 

  15. R. O. Ritchie and R. M. Horn, Metall. Trans. 9A (1978) 331.

    Article  CAS  Google Scholar 

  16. S. Lee, L. Majino and J. Asaro, ibid. 16A (1985) 1633.

    Article  CAS  Google Scholar 

  17. Y. Tomita and K. Okabayashi, ibid. 14A (1983) 485.

    Article  Google Scholar 

  18. Idem, ibid. 14A (1983) 2387.

    Article  CAS  Google Scholar 

  19. Idem, ibid. 15A (1984) 2247.

    Article  CAS  Google Scholar 

  20. Idem, ibid. 16A (1985) 73.

    Article  CAS  Google Scholar 

  21. Idem, ibid. 16A (1985) 83.

    Article  CAS  Google Scholar 

  22. Y. Tomita, ibid. 18A (1987) 1495.

    Article  CAS  Google Scholar 

  23. Idem, ibid. 19A (1988) 2513.

    Article  CAS  Google Scholar 

  24. Idem, J. Mater. Sci. 24 (1989) 1357.

    Article  CAS  Google Scholar 

  25. Idem, Mater. Sci. Technol. 6 (1990) 843.

    Article  CAS  Google Scholar 

  26. Idem, Metall. Trans. 22A (1991) 1093.

    Article  CAS  Google Scholar 

  27. Idem, J. Mater. Sci. 26 (1991) 2645.

    Article  CAS  Google Scholar 

  28. M. F. Carlson, B. V. N. Rao and G. Thomas, Metall. Trans. 10A (1979) 1273.

    Article  CAS  Google Scholar 

  29. B. V. N. Rao and G. Thomas, ibid. 11A (1980) 441.

    Article  CAS  Google Scholar 

  30. M. Sarikaya, B. G. Steinberg and G. Thomas, ibid. 13A (1982) 2227.

    Article  Google Scholar 

  31. V. T. T. Miikinen and D. V. Edmonds, Mater. Sci. Technol. 3 (1987) 422.

    Article  Google Scholar 

  32. Idem, ibid. 3 (1987) 432.

    Article  Google Scholar 

  33. Idem, ibid. 3 (1987) 441.

    Article  Google Scholar 

  34. J. R. Rice and M. A. Johnson, in “Inelastic Behavior of Solids”, edited by M. F. Kanninen, W. C. Adler, A. R. Rosenfield and R. I. Jaffe (McGraw-Hill, New York, 1970) p. 641.

    Google Scholar 

  35. T. B. Cox and J. R. Low, Metall. Trans. 5 (1974) 1457.

    Article  CAS  Google Scholar 

  36. W. C. Leslie, Trans. Iron Steel Soc. 2 (1983) 1.

    CAS  Google Scholar 

  37. Y. Tomita, Mater. Sci. Technol. 7 (1991) 97.

    Article  CAS  Google Scholar 

  38. T. J. Baker and R. Johnson, J. Iron Steel Inst. 211 (1973) 783.

    CAS  Google Scholar 

  39. B. J. Schulz and C. J. McMahon Jr, Metall. Trans. 4 (1973) 2485.

    Article  CAS  Google Scholar 

  40. J. S. McBride, Met. Mater. 8 (1974) 269.

    Google Scholar 

  41. T. J. Baker and W. D. Harrison, Met. Technol. 2 (1975) 201.

    Article  Google Scholar 

  42. D. R. Glue, C. H. Jones and H. K. M. Lloyd, ibid. 2 (1975) 416.

    Article  Google Scholar 

  43. R. C. Andrew and G. M. Weston, Met. Sci. 11 (1977) 142.

    Article  CAS  Google Scholar 

  44. C. L. Briant and S. K. Banerji, Int. Met. Rev. 23 (1978) 164.

    Article  CAS  Google Scholar 

  45. N. P. McLeod and J. Nutting, Met. Technol. 9 (1982) 399.

    Article  CAS  Google Scholar 

  46. S. Preston, G. Hale and J. Nutting, Mater. Sci. Technol. 1 (1985) 192.

    Article  CAS  Google Scholar 

  47. Y. Tomita, Metall. Trans. 21A (1990) 2739.

    Article  CAS  Google Scholar 

  48. A. D. Wilson, in “Proceedings of the 11th Offshore Technology Conference”, Vol. 2, Dallas, TX, Offshore Technology Conference (1979) p. 939.

  49. A. D. Wilson, J. Engng Mater. Technol. (Trans. ASME) 101 (1979) 265.

    Article  CAS  Google Scholar 

  50. Y. Tomita, Metall. Trans., submitted.

  51. G. T. Hahn and A. R. Rosenfield, ibid. 6A (1975) 653.

    CAS  Google Scholar 

  52. Y. Tomita, ibid. 19A (1988) 1555.

    CAS  Google Scholar 

  53. Idem, ibid. 21A (1990) 2555.

    CAS  Google Scholar 

  54. Idem, J. Mater. Sci. 25 (1990) 950.

    Article  CAS  Google Scholar 

  55. Idem, ibid., J. Mater. Sci. 26 (1991) 35.

    Article  CAS  Google Scholar 

  56. Idem, Mater. Sci. Technol. 5 (1989) 1084.

    Article  CAS  Google Scholar 

  57. W. M. Garrison Jr and N. R. Moody, Metall. Trans. 18A (1987) 1252.

    Google Scholar 

  58. W. M. Garrison Jr, ibid. 17A (1986) 669.

    Article  CAS  Google Scholar 

  59. K. J. Handerhan, W. M. Garrison Jr and N. R. Moody, ibid. 20A (1989) 105.

    Article  CAS  Google Scholar 

  60. E. Spitzler and J. Wendroff, in “Proceedings of NOH-BOS Conference”, Vol. 61 (AIME, New York, 1978) p. 174.

    Google Scholar 

  61. G. R. Speich, D. S. Dabkowski and L. F. Porter, Metall. Trans. 4 (1973) 303.

    Article  CAS  Google Scholar 

  62. J. L. Maloney and W. M. Garrison Jr, Scripta Metall. 23 (1988) 2097.

    Article  Google Scholar 

  63. G. B. Olson and R. G. Bourdeau, in “Rapidly Solidified Ferrous Alloys”, edited by S. K. Das, B. H. Kear and C. M. Adam (TMS, Warrendale, PA, 1985) p. 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, Y. Improved fracture toughness of ultrahigh strength steel through control of non-metallic inclusions. Journal of Materials Science 28, 853–859 (1993). https://doi.org/10.1007/BF00400864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400864

Keywords

Navigation