Skip to main content
Log in

Food resources of postlarval brown shrimp (Penaeus aztecus) in a Texas salt marsh

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Field and laboratory experiments were conducted to identify the sources of food in the natural diet of postlarval brown shrimp (Penaeus aztecus Ives). A series of enclosures placed in East Lagoon (29°20′N; 94°45′W) on Galveston Island, Texas, USA, in May 1985, were used to evaluate the individual and combined contribution of Spartina alterniflora detritus, epiphytes of S. alterniflora, plankton, and demersal fauna in terms of differences in shrimp growth and carbon assimilation (stable carbon-isotope analysis). Demersal fauna (harpacticoid copepods, amphipods, tanaids and polychaete annelids), and plankton (>0.095 mm) accounted for approximately 53 and 47% of the growth of the postlarvae (11 to 22 mm rostrum-telson length), respectively, while the autochthonous plant substrates, S. alterniflora detritus and epiphytes, contributed little. Laboratory experiments confirm that a mixed diet consisting of both animal protein and phytoplankton promotes maximum growth. Our results indicate that plankton may be an important allochthonous source of carbon contributing to the growth and development of shrimp in the salt marsh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bell, S. S., Watzin, M. C., Coull, B. C. (1978). Biogenic structure and its effects on the spatial heterogeneity of meiofauna in a salt marsh. J. exp. mar. Biol. Ecol. 35: 99–107

    Google Scholar 

  • Boesch, D. F., Turner, R. E. (1984). Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7: 460–468

    Google Scholar 

  • Chong, V. C., Sasekumar, A. (1981). Food and feeding habits of the white prawn Penaeus merguiensis. Mar. Ecol. Prog. Ser. 5: 185–191

    Google Scholar 

  • Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. cosmochim. Acta 12: 133–149

    Google Scholar 

  • Darnell, R. M. (1961). Trophic spectrum of an estuarine lake community, based on studies of Lake Pontchartrain, Louisiana. Ecology 42: 553–568

    Google Scholar 

  • DeNiro, M. J., Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochim. cosmochim. Acta 42: 495–506

    Google Scholar 

  • Findlay, S., Tenore, K. (1982). Nitrogen source for a detritivore: detritus substrate versus associated microbes. Science, N.Y. 218: 371–373

    Google Scholar 

  • Fry, B. (1984) 13C/12C ratios and the trophic importance of algae in Florida Syringodium filiforme seagrass meadows. Mar. Biol. 79: 11–19

    Google Scholar 

  • Fry, B., Arnold, C. (1982). Rapid C-13/C-12 turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54: 200–204

    Google Scholar 

  • Fry, B., Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. mar. Sci. Univ. Tex. 27: 13–47

    Google Scholar 

  • George, M. J. (1978). The food of the shrimp Metapenaeus monoceros (Fabricus) caught from the backwaters. Indian J. Fish. 21: 495–500

    Google Scholar 

  • Gleason, D. F. (1986). Utilization of salt marsh plants by post-larval brown shrimp: carbon assimilation rates and food preferences. Mar. Ecol. Prog. Ser. 31: 151–158

    Google Scholar 

  • Gleason, D. F., Zimmerman, R. J. (1984). Herbivory potential of postlarval brown shrimp associated with salt marshes. J. exp. mar. Biol. Ecol. 84: 235–246

    Google Scholar 

  • Haines, E. B. (1979). Interactions between Georgia salt marshes and coastal waters: a changing paradigm. In: Livingston, R. J. (ed.) Ecological processes in coastal and marine systems. Plenum Press, New York, p. 35–46

    Google Scholar 

  • Haines, E. B., Montague, C. L. (1979). Food resources of estuarine-invertebrates analyzed using 13C/12C ratios. Ecology 60: 48–56

    Google Scholar 

  • Hoffman, J. A., Katz, J., Bertness, M. D. (1984). Fiddler crab deposit-feeding and meiofaunal abundance in salt marsh habitats. J. exp. mar. Biol. Ecol. 82: 161–174

    Google Scholar 

  • Hughes, E. H., Sherr, E. B. (1983). Subtidal food webs in a Georgia estuary: δ13C analysis. J. exp. mar. Biol. Ecol. 67: 227–242

    Google Scholar 

  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211

    Google Scholar 

  • Jones, R. R. (1973). Utilization of Louisiana estuarine sediments as a source of nutrition for the brown shrimp Penaeus aztecus lves. Dissertation. Louisiana State University, Baton Rouge, Louisiana, USA

    Google Scholar 

  • Kitting, C. L., Fry, B., Morgan, M. D. (1984). Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62: 145–149

    Google Scholar 

  • Kneib, R. T., Stiven, A. E. (1978). Growth, reproduction and feeding of Fundulus heteroclitus (L.) on a North Carolina salt marsh. J. exp. mar. Biol. Ecol. 31: 121–140

    Google Scholar 

  • Kneib, R. T., Stiven, A. E. (1982). Benthic invertebrate responses to size and density manipulations of the common mummichog, Fundulus heteroclitus, in an intertidal salt marsh. Ecology 63: 1518–1532

    Google Scholar 

  • Kneib, R. T., Stiven, A. E., Haines, E. B. (1980). Stable carbon isotope ratios in Fundulus heteroclitus (L.) muscle tissue and gut contents from a North Carolina Spartina marsh. J. exp. mar. Biol. Ecol. 46: 89–98

    Google Scholar 

  • Morgan, M. D., Kitting, C. L. (1984). Productivity and utilization of the seagrass. Halodule wrightii and its attached epiphytes. Limnol. Oceanogr. 29: 1066–1076

    Google Scholar 

  • Odum, E. P. (1980). The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling, and detritus-based food chains. In: Kennedy, V. S. (ed.) Estuarine perspectives. Academic Press, New York, p. 485–495

    Google Scholar 

  • Pearson, J. C. (1939). The early life histories of some American Penaeidae chiefly the commercial shrimp Penaeus setiferus. Bull. Bur. Fish., Wash. 49: 1–73

    Google Scholar 

  • Peterson, B. J., Howarth, R. W., Garritt, R. H. (1985). Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science, N.Y. 227: 1361–1363

    Google Scholar 

  • SAS Institute Inc. (1982). SAS user's guide: statistics. Cary, North Carolina

  • Thayer, G. W., Stewart, H. H., Kenworthy, W. J., Ustach, J. F., Hall, A. B. (1978) Habitat values of salt marshes, mangroves, and seagrasses for aquatic organisms. In: Greeson, P.E., Clark, J. R., Clark, J. E. (eds.) Proceedings of the National Symposium on Wetlands, American Water Resources Association. Minneapolis, Minnesota, U.S.A., p. 235–247

  • Venkataramiah, A., Lakshmi, G. J., Gunter, G. (1975) Effect of protein level and vegetable matter on the growth and food conversion efficiency of brown shrimp. Aquaculture, Amsterdam 6: 115–125

    Google Scholar 

  • Weinstein, M. P. (1979). Shallow marsh habitats as primary nurseries for fishes and shellfish. Cape Fear River, North Carolina. Fish. Bull. U.S. 77: 339–358

    Google Scholar 

  • Williams, A. B. (1955). A contribution to the life histories of commercial shrimps (Penaeidae) in North Carolina. Bull. mar. Sci. Gulf Caribb. 5: 116–146

    Google Scholar 

  • Zimmerman, R. J., Minello, T., Zamora, G. (1984). Selection by Penaeus aztecus for vegetated habitat in a Galveston Bay salt marsh. Fish. Bull. (NOAA) 84: 325–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleason, D.F., Wellington, G.M. Food resources of postlarval brown shrimp (Penaeus aztecus) in a Texas salt marsh. Mar. Biol. 97, 329–337 (1988). https://doi.org/10.1007/BF00397763

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397763

Keywords

Navigation