Skip to main content
Log in

Growth rates of summer nanoplankton (<10 μm) populations in lower Narragansett Bay, Rhode Island, USA

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Growth rates of summer (June–September) phytoplankton assemblages and constituent species were measured in 30 diffusion culture experiments. Size-fractionated (<10 μm) phytoplankton assemblages were incubated in situ or under simulated in-situ conditions in outdoor tanks connected to a running seawater system. Doubling rates of important species and groups (such as microflagellates) were compared to community biomass doubling rates estimated from 14C uptake and changes in chlorophyll a concentrations. Division rates of dominant diatom species generally equalled or exceeded community biomass doubling rates, while those of flagellates and non-motile ultraplankters were slower. Maximum division rates of sixteen common diatom species exceeded 2.1 divisions d-1, while nine had maximum division rates in excess of 3 d-1. Mean division rates of 12 diatom species exceeded 1 d-1. Maximum division rates of flagellated species, uncharacterized microflagellates and non-motile ultraplankton assemblages were 2.1, 1.5 and 1.4 d-1, respectively. Microflagellate and non-motile ultraplankton assemblage doubling rates were less than 0.5 d-1 in over half of all growth experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Banse, K.: Determining the carbon-chlorophyll ratio of natural phytoplankton. Mar. Biol. 41, 199–212 (1977)

    Google Scholar 

  • Ben-Amotz, A. and A. Gilboa: Cryopreservation of marine unicellular algae. I. A survey of algae with respect to size, culture age, photosynthetic activity and chlorophyll to cell ratio. Mar. Ecol. Prog. Ser. 2, 157–161 (1980)

    Google Scholar 

  • Braarud, T.: Experimental studies on marine plankton diatoms. Abh. norske Vidensk. Acad. 10, 3–16 (1945)

    Google Scholar 

  • Brand, L. E. and R. R. L. Guillard: The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. J. exp. mar. Biol. Ecol. 50, 119–132 (1981)

    Google Scholar 

  • Braune, W.: Experimentelle Untersuchungen in situ zur Biomassbildung von Mikroalgen und zur Entwicklungen natürlicher Algen-Biozönosen im Fliessgewässer. Int. Rev. ges. Hydrobiol. 57, 227–256 (1972)

    Google Scholar 

  • Curl, H. Jr. and G. C. McLeod: The physiological ecology of a marine diatom, Skeletonema costatum (Grev.) Cleve. J. mar. Res. 19, 70–88 (1961)

    Google Scholar 

  • Dodson, A. N. and W. H. Thomas: Concentrating plankton in a gentle fashion. Limnol. Oceanogr. 9, 455–456 (1964)

    Google Scholar 

  • Durbin, E. G.: Studies on the autecology of the marine diatom Thalassiosira nordenskioeldii Cleve. II. The influence of cell size on growth rate and carbon, nitrogen, chlorophyll a and silica content. J. Phycol. 13, 150–155 (1977)

    Google Scholar 

  • Durbin, E. G., R. W. Kraweic and T. J. Smayda: Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay (USA). Mar. Biol. 32, 271–287 (1975)

    Google Scholar 

  • Eppley, R. W.: Temperature and phytoplankton growth in the sea. Fish. Bull., U.S. 70, 1063–1085 (1972)

    Google Scholar 

  • Eppley, R. W., F. M. H. Reid and J. D. H. Strickland: Estimates of phytoplankton crop size, growth rate and primary production. In: The ecology of the plankton off La Jolla, California, in the period April through September 1967, pp 33–42. Ed. by J. D. H. Strickland. Bull. Scripps Inst. Oceanogr. 17, 1970

  • Furnas, M. J.: An evaluation of two diffusion culture techniques for estimating phytoplankton growth rates in situ. Mar. Biol. 70, 63–72 (1982a)

    Google Scholar 

  • Furnas, M. J.: Biomass, community structure and primary production of size-fractionated summer phytoplankton populations from Narragansett Bay (in review) (1982b)

  • Furnas, M. J., G. L. Hitchcock and T. J. Smayda: Nutrient-phytoplankton relationships in Narragansett Bay during the 1974 summer bloom. In: Estuarine processes, Vol. I, pp 118–133. Uses, stresses and adaptations to the estuary. Ed. by M. Wiley. New York: Academic Press 1976

    Google Scholar 

  • Goldman, J. C., J. J. McCarthy and D. G. Peavy: Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, Lond. 279, 210–215 (1979)

    Google Scholar 

  • Guillard, R. R. L.: Division rates. In: Handbook of phycological methods Vol. I, pp 289–312. Ed. by J. Stein. New York: Cambridge Univ. Press 1973

    Google Scholar 

  • Harrison, W. G.: Experimental measurements of nitrogen remineralization in coastal waters. Limnol. Oceanogr. 23, 684–694 (1979)

    Google Scholar 

  • Harrison, W. G. and T. Platt: Variations in assimilation number of coastal marine phytoplankton: effects of environmental covariates. J. Plankton Res. 2, 249–260 (1980)

    Google Scholar 

  • Hitchcock, G. L.: Influence of temperature on the growth rate of Skeletonema costatum in response to variations in daily light intensity. Mar. Biol. 57, 261–270 (1980)

    Google Scholar 

  • Hitchcock, G. L. and T. J. Smayda: The importance of light in the initiation of the 1972–1973 winter-spring diatom bloom in Narragansett Bay. Limnol. Oceanogr. 22, 126–131 (1977)

    Google Scholar 

  • Hoogenhout, H. and J. Amesz: Growth rates of photosynthetic microorganisms in laboratory cultures. Arch. Mikrob. 50, 10–25 (1965)

    Google Scholar 

  • Ignatiades, L. and T. J. Smayda: Autecological studies on the marine diatom Rhizosolenia fragilissima Bergon. I. The influence of light, temperature and salinity. J. Phycol. 6, 332–339 (1970)

    Google Scholar 

  • Jensen, A., B. Rystad and L. Skoglund: The use of dialysis culture in phytoplankton studies. J. exp. mar. Biol. Ecol. 8, 241–248 (1972)

    Google Scholar 

  • Jitts, H. R., C. D. McAllister, K. Stephens and J. D. H. Strickland: The cell division rates of some marine phytoplankters as a function of light and temperature. J. Fish. Res. Bd Can. 21, 139–157 (1964)

    Google Scholar 

  • Lorenzen, C. J.: A method for the continuous measurement of in vivo chlorophyll concentrations. Deep-Sea Res. 13, 223–227 (1966)

    Google Scholar 

  • Malone, T. C.: Light saturated photosynthesis by phytoplankton size fractions in the New York Bight, U.S.A. Mar. Biol. 42, 281–292 (1977)

    Google Scholar 

  • Malone, T. C., M. B. Chervin and D. C. Boardman: Effects of 22 μm screens on size frequency distributions of suspended particles and biomass estimates of phytoplankton size fractions. Limnol. Oceanogr. 24, 956–960 (1979)

    Google Scholar 

  • McFeeters, G. A. and D. G. Stuart: Survival of coliform bacteria in natural waters: Field and laboratory studies with membrane filter chambers. Appl. Microb. 24, 805–811 (1972)

    Google Scholar 

  • Menzel, D. W., E. M. Hulburt and J. H. Ryther: The effects of enriching Sargasso Sea water on the production and species composition of the phytoplankton. Deep-Sea Res. 10, 209–219 (1963)

    Google Scholar 

  • Nixon, S. W., C. A. Oviatt and S. S. Hale: Nitrogen regeneration and the metabolism of coastal bottom communities. In: The Role of terrestrial and aquatic organisms in decomposition processes, pp 269–283. Ed. by J. M. Anderson and A. MacFadyen. Oxford: Blackwell 1975

    Google Scholar 

  • Owens, O. v. H., P. Dresler, C. C. Crawford, M. A. Tyler and H. H. Seliger: Phytoplankton cages for the measurement in situ of the growth rates of mixed natural populations. Chesapeake Sci. 18, 325–333 (1977)

    Google Scholar 

  • Paasche, E.: The influence of cell size on growth rate, silica content and some other properties of four marine diatom species. Norw. J. Bot. 20, 197–204 (1973)

    Google Scholar 

  • Paerl, H. W. and L. A. Makenzie: A comparative study of the diurnal carbon fixation patterns of nanoplankton and net plankton. Limnol. Oceanogr. 22, 732–738 (1977)

    Google Scholar 

  • Pratt, D. M.: The phytoplankton of Narragansett Bay. Limnol. Oceanogr. 4, 425–440 (1959)

    Google Scholar 

  • Sakshaug, E.: Limiting nutrients and maximum growth rates for diatoms in Narragansett Bay. J. exp. mar. Biol. Ecol. 28, 109–123 (1977)

    Google Scholar 

  • Sakshaug, E. and A. Jensen: The use of cage cultures in studies of the biochemistry and ecology of marine phytoplankton. Ocean. Mar. Biol. Ann. Rev. 16, 81–106 (1978)

    Google Scholar 

  • Smayda, T. J.: Phytoplankton studies in lower Narragansett Bay. Limnol. Oceanogr. 2, 342–359 (1957)

    Google Scholar 

  • Smayda, T. J.: Bioassay of the growth potential of the surface water of lower Narragansett Bay over an annual cycle using the diatom Thalassiosira pseudonana (Oceanic clone 13-1). Limnol. Oceanogr. 19, 889–901 (1974)

    Google Scholar 

  • Smayda, T. J.: The growth of Skeletonema costatum during a winter-spring bloom in Narragansett Bay, Rhode Island. Norw. J. Bot. 20, 219–247 (1973)

    Google Scholar 

  • Smayda, T. J.: From phytoplankters to biomass. In: Phytoplankton manual, pp 273–279. Ed. by A. Sournia. UNESCO Monographs on Oceanographic Methodology 6, 1978

  • Spencer, C. P.: Studies on the culture of a marine diatom. J. mar. biol. Assoc. U.K. 33, 265–290 (1954)

    Google Scholar 

  • Steemann Nielsen, E.: The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons., Cons. int. Explor. Mer 18, 117–140 (1952)

    Google Scholar 

  • Strathmann, R. R.: Estimating the organic content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12, 411–418 (1967)

    Google Scholar 

  • Swift, E. and E. G. Durbin: The phased division and cytological characteristics of Pyrocystis spp. can be used to estimate doubling times of their populations in the sea. Deep-Sea Res. 19, 189–198 (1972)

    Google Scholar 

  • Throndsen, J.: Occurrence and productivity of small marine flagellates. Norw. J. Bot. 23, 269–293 (1976)

    Google Scholar 

  • Tomas, C. R.: Olisthodiscus luteus (Chrysophyceae) I. Effects of salinity and temperature on growth, motility and survival. J. Phycol. 14, 309–313 (1978)

    Google Scholar 

  • Tomas, C. R.: Olisthodiscus luteus (Chrysophyceae) II. Effects of light intensity and temperature on photosynthesis and cellular composition. J. Phycol. 16, 149–156 (1980)

    Google Scholar 

  • Vargo, G. A.: The influence of grazing and nutrient excretion by zooplankton on the growth and production of the marine diatom Skeletonema costatum (Greville) Cleve in Narragansett Bay. Ph.D. Thesis, Univ. of Rhode Island, Kingston, 216 pp. 1976

    Google Scholar 

  • Vargo, G. A.: The contribution of ammonia excreted by zooplankton to phytoplankton production in Narragansett Bay. J. Plankton Res. 1, 75–84 (1979)

    Google Scholar 

  • Verity, P. G.: Effects of temperature, irradiance and daylength on the marine diatom Leptocylindrus danicus Cleve. IV. Growth. J. exp. mar. Biol. Ecol. 60, 209–222 (1982)

    Google Scholar 

  • Watt, W. S.: Measuring primary production rates of individual phytoplankton species in natural mixed populations. Deep-Sea Res. 18, 329–339 (1971)

    Google Scholar 

  • Weiler, C. S. and R. W. Eppley: Temporal pattern of division in the dinoflagellate genus Ceratium and its application to the determination of growth rate. J. exp. mar. Biol. Ecol. 39, 1–24 (1979)

    Google Scholar 

  • Williams, R. B.: Division rates of salt marsh diatoms in relation to salinity and cell size. Ecology 45, 877–880 (1964)

    Google Scholar 

  • Yentsch, C. S. and D. Menzel: A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10, 221–231 (1963)

    Google Scholar 

  • Yoder, J. A.: A comparison between cell division rate of natural populations of the marine diatom Skeletonema costatum (Greville) Cleve grown in dialysis culture and that predicted from a mathematical model. Limnol. Oceanogr. 24, 97–106 (1979)

    Google Scholar 

  • Yoder, J. A.: Effect of temperature on light-limited growth and chemical composition of Skeletonema costatum (Bacillariophyceae). J. Phycol. 15, 362–370 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. K. Pierce, College Park

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furnas, M.J. Growth rates of summer nanoplankton (<10 μm) populations in lower Narragansett Bay, Rhode Island, USA. Mar. Biol. 70, 105–115 (1982). https://doi.org/10.1007/BF00397301

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397301

Keywords

Navigation