Marine Biology

, Volume 87, Issue 1, pp 33–46 | Cite as

Effects of turbidity on calcification rate, protein concentration and the free amino acid pool of the coral Acropora cervicornis

  • J. J. KendallJr.
  • E. N. Powell
  • S. J. Connor
  • T. J. Bright
  • C. E. Zastrow


Calcification rate in the coral Acropora cervicornis was reduced significantly when exposed for 24 h to 100-ppm kaolin, but was unchanged in corals exposed to 50-ppm kaolin. Calcification rate returned to control levels during a 48-h recovery period. Most free amino acids (FAA) in the FAA pool decreased significantly in corals exposed to 100-ppm kaolin, but were unchanged in corals exposed to 50-ppm kaolin. After a 48-h recovery period, the FAA pool remained considerably below control levels in the 100-ppm exposed corals and dropped below control levels in the 50-ppm exposed corals. Calcification rate dropped less and later during the exposure period in the growing tip than in sections further down the stalk. The reduction in FAA pool size was considerably larger in the growing tip than further down the stalk. Soluble protein concentration remained unchanged during both exposure and recovery. The data are consistent with the interpretation that turbidity not only causes a decrease in photosynthetic rate and the synthesis of small molecules, but also causes a large increase in the utilization of stored organic molecules for such metabolically costly processes as mucus production and sediment removal.


Turbidity Soluble Protein Photosynthetic Rate Control Level Kaolin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aller, R. C. and R. E. Dodge: Animal-sediment relations in a tropical lagoon Discovery Bay, Jamaica. J. mar. Res. 32, 209–232 (1974)Google Scholar
  2. Amende, L. M. and S. K. Pierce: Structural changes in Noetia ponderosa red blood cell membranes during cell volume regulation in reduced salinities: a freeze fracture study. J. comp. Physiol. 138, 299–306 (1980)Google Scholar
  3. Antonius, A.: Coral reef pathology: a review. In: The reef and man. Proc. Fourth Int. Coral Reef Symp., vol. 2, pp 3–6, Ed. by E. D. Gomez, C. E. Birkeland, R. W. Buddemeier, R. E. Johannes, J. A. Marsh, Jr. and R. T. Tsuda. Quezon City, Philippines. Marine Sciences Center, University of the Philippines 1981Google Scholar
  4. Arola, L. L., A Palou, X. Remesar, E. Herrera and M. Alemany: Effects of stress and sampling site on metabolic concentration in rat plasma. Arch. int. Physiol. Biochem. 88, 99–105 (1980)Google Scholar
  5. Baden, S. P.: Impaired osmoregulation in the shrimp Palaemon adspersus exposed to crude oil extract. Mar. Pollut. Bull. 13, 208–210 (1982)CrossRefGoogle Scholar
  6. Baden, S. and L. Hagerman: Ventilatory responses of the shrimp Palaemon adspersus to sublethal concentrations of crude oil extract. Mar. Biol. 63, 129–133 (1981)Google Scholar
  7. Bak, R. P. M.: Lethal and sublethal effects of dredging on reef corals. Mar. Pollut. Bull. 9, 14–16 (1978)CrossRefGoogle Scholar
  8. Bak, R. P. M. and J. H. B. W. Elgershuizen: Patterns of oilsediment rejection in corals. Mar. Biol. 37, 105–113 (1976)Google Scholar
  9. Barnes, D. J. and C. J. Crossland: Coral calcification: sources of error in radioisotope techniques. Mar. Biol. 42, 119–129 (1977)Google Scholar
  10. Benson, A. A. and L. Muscatine: Wax in coral mucus: energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974)Google Scholar
  11. Benson-Rodenbough, B. and W. R. Ellington: Responses of the euryhaline sea anemone Bunodosoma cavernata (Bosc) (Anthozoa, Actinaria, Actiniidae) to osmotic stress. Comp. Biochem. Physiol. 72A, 731–735 (1982)CrossRefGoogle Scholar
  12. Blackburn, S.: Sample preparation and hydrolytic methods. In: Amino acid determination methods and techniques, 2nd ed., pp 7–37. Ed by S. Blackburn. New York: Marcel Dekker, Inc. 1978Google Scholar
  13. Bouck, G. R. and R. C. Ball: Influence of capture methods on blood characteristics and mortality in the rainbow trout (Salmo gairdneri). Trans. Am. Fish. Soc. 95, 170–176 (1966)Google Scholar
  14. Bull, G. R.: Scleractinian coral communities of two inshore high island fringing reefs at Magnetic Island, North Queensland. Mar. Ecol. Prog. Ser. 7, 267–272 (1982)Google Scholar
  15. Clausen, C. D. and A. A. Roth: Estimation of coral growth-rates from laboratory 45Ca-incorporation rates. Mar. Biol. 33, 85–91 (1975)Google Scholar
  16. Crossland, C. J. and D. J. Barnes: Calcification in the staghorn coral Acropora acuminata: variations in apparent skeletal incorporation of radioisotopes due to different methods of processing. Mar. Biol. 43, 57–62 (1977)Google Scholar
  17. Crossland, C. J., D. J. Barnes and M. A. Borowitzka: Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60, 81–90 (1980)Google Scholar
  18. Dallmeyer, D. G., J. W. Porter and G. J. Smith: Effects of particulate peat on the behavior and physiology of the Jamaican reef-building coral Montastrea annularis. Mar. Biol. 68, 229–233 (1982)Google Scholar
  19. Daumas, R., R. Galois and B. A. Thomassin: Biochemical composition of soft and hard coral mucus on a New Caledonian lagoonal reef. In: The reef and man. Proc. Fourth Int. Coral Reef Symp., vol. 2, pp 59–67. Ed. by E. D. Gomez, C. E. Birkeland, R. W. Buddemeier, R. E. Johannes, T. A. Marsh, Jr. and R. T. Tsuda. Quezon City, Philippines: Marine Sciences Center, University of the Philippines 1981Google Scholar
  20. D'Elia, C. F. and K. L. Webb: The dissolved nitrogen flux of reef corals. In: Proc. Third int. Coral Reef Symp., vol. 1, Miami, Florida: University of Miami, Rosenstiel School of Marine and Atmospheric Science 1977Google Scholar
  21. Dearlove, G. E., J. M. Viles and S. H. Bishop: Aminoethylphosphoric acid (AEP) containing glycoproteins in Metridium senile: 14C-AEP incorporation and electron probe microanalyses. J. exp. Zool. 210, 169–176 (1979)Google Scholar
  22. Dodge, R. E., R. C. Aller and J. Thomson: Coral growth related to resuspension of bottom sediments. Nature, Lond. 247, 574–577 (1974)Google Scholar
  23. Dodge, R. E. and J. R. Vaisnys: Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. J. mar. Res. 35, 715–730 (1977)Google Scholar
  24. Dollar, S. J. and R. W. Grigg: Impact of a kaolin clay spill on a coral reef in Hawaii. Mar. Biol. 65, 269–276 (1981)Google Scholar
  25. Egãna, A. C. and L. H. DiSalvo: Mass expulsion of zooxanthellae by Easter Island corals. Pac. Sci. 36, 61–63 (1982)Google Scholar
  26. Elliott, J. M.: Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association Scientific Publication No. 25, Ambleside, U.K. 1977Google Scholar
  27. Engle, D. W. and B. A. Fowler: Copper and cadmium induced changes in the metabolism and structure of molluscan gill tissue, pp 239–256. In: Marine pollution: functional responses. Ed. by W. Vernberg, A. Calabrese, F. Thurberg and F. Vernberg. New York: Academic Press 1979Google Scholar
  28. Gäde, G.: Energy production during anoxia and recovery in the adductor muscle of the file shell, Lima hians. Comp. Biochem. Physiol. 76B, 73–77 (1983)Google Scholar
  29. Gittings, S. R., T. J. Bright and E. N. Powell: Hard-bottom macrofauna of the East Flower Garden brine seep: impact of a long-term, sulfurous brine discharge. Contrib. mar. Sci. 27, 105–125 (1984)Google Scholar
  30. Goreau, T. F.: The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull. mar. biol. Lab., Woods Hole 116, 59–79 (1959)Google Scholar
  31. Goreau, T. F. and N. I. Goreau: The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull. mar. biol. Lab., Woods Hole 117, 239–250 (1959)Google Scholar
  32. Highsmith, R. C., A. C. Riggs and C. M. D'Antonio: Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia (Berl.) 46, 322–329 (1980)Google Scholar
  33. Hubbard, J. A. E. B. and Y. P. Pocock: Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geol. Rundschau 61, 598–626 (1972)Google Scholar
  34. Hudson, J. H.: Growth rates in Montastraea annularis: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bull. mar. Sci. 31, 444–459 (1981)Google Scholar
  35. Hurlbert, S. H.: Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984)Google Scholar
  36. Jaap, W. C.: Observations on zooxanthellae expulsion at Middle Sambo Reef, Florida Keys. Bull. mar. Sci. 29, 414–422 (1979)Google Scholar
  37. Jacob, R. and E. Barrett: Chromatographic analysis of glutamine in plasma. J. Chromatogr. 229, 188–192 (1982)PubMedGoogle Scholar
  38. Jeffries, H. P.: A stress syndrome in the hard clam, Mercenaria mercenaria. J. Invertebr. Pathol. 20, 242–251 (1972)Google Scholar
  39. Johnson, J. K.: Effect of turbidity on the rate of filtration and growth of the slipper limpet Crepidula fornicata Lamarck 1799. Veliger 14, 315–320 (1972)Google Scholar
  40. Johnson, R. G.: Particulate matter at the sediment-water interface in coastal environments. J. mar. Res. 32, 313–330 (1974)Google Scholar
  41. Kasschau, M. R., M. M. Skaggs and E. C. M. Chen: Accumulation of glutamate in sea anemones exposed to heavy metals and organic amines. Bull. environ. Contam. Toxicol. 25, 873–878 (1980)PubMedGoogle Scholar
  42. Kendall, J. J. Jr., E. N. Powell, S. J. Connor and T. J. Bright: The effects of drilling fluids (muds) and turbidity on the growth and metabolic state of the coral Acropora cervicornis, with comments on methods of normalization for coral data. Bull. mar. Sci. 33, 336–352 (1983)Google Scholar
  43. Kendall, J. J. Jr., E. N. Powell, S. J. Connor, T. J. Bright and C. E. Zastrow: The importance of monitoring metabolic recovery in the coral Acropora cervicornis after short-term exposure to drilling muds: calcification rate and protein concentration. Coral Reefs 2, 215–225 (1984)Google Scholar
  44. Knowlton, N., J. C. Lang, M. C. Rooney and P. Clifford: Evidence for delayed mortality in hurricance-damaged Jamaican staghorn corals. Nature, Lond. 294, 251–252 (1981)Google Scholar
  45. Koenig, M. L., E. N. Powell and M. R. Kasschau: The effects of salimity change on the free amino acid pools of two nereid polychaetes, Neanthes succinea and Leonereis culveri. Comp. Biochem. Physiol. 70A, 631–637 (1981)CrossRefGoogle Scholar
  46. Krupp, D. A.: The composition of the mucus from the mushroom coral, Fungia scutaria. In: The reef and man. Proc. Fourth Int. Coral Reef Symp., vol. 2, pp 69–73. Ed. by E. D. Gomez, C. E. Birkeland, R. W. Buddemeir, R. E. Johannes, J. A. Marsh, Jr. and R. T. Tsuda. Quezon City, Philippines: Marine Sciences Center, University of the Philippines 1981Google Scholar
  47. Lasker, H. R.: Sediment rejection by reef corals: the roles of behavior and morphology in Montastrea cavernosa (Linnaeus). J. exp. mar. Biol. Ecol. 47, 77–87 (1980)CrossRefGoogle Scholar
  48. Leversee, G. J.: Incorporation and distribution of labeled proline in collagenous and non-collagenous components of the gorgonian coral Leptogorgia virgulata (Coelenterata, Octocorallia). Comp. Biochem. Physiol. 67B, 499–503 (1980)Google Scholar
  49. Loosanoff, V. L.: Effects of turbidity on some larval and adult bivalves. Proc. Gulf Caribb. Fish. Inst. 14, 80–95 (1962)Google Scholar
  50. Low, R. B., C. M. Leffingwell and C. A. Bulman: Effects of kaolinite on amino acid transport and incorporation into protein by rabbit pulmonary alveolar macrophages. Arch. environ. Health. 35, 217–223 (1980)PubMedGoogle Scholar
  51. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall: Protein measurement with the Folin phenol reagent. Anal. Biochem. 48, 422–427 (1951)Google Scholar
  52. Loya, Y.: Effects of water turbidity and sedimentation on the community structure of Puerto Rican corals. Bull. mar. Sci. 26, 450–466 (1976)Google Scholar
  53. Loya, Y. and B. Rinkevich: Effects of oil pollution on coral reef communities. Mar. Ecol. Prog. Ser. 3, 167–180 (1980)Google Scholar
  54. McFarland, V. A. and R. K. Peddicord: Lethality of a suspended clay to a diverse selection of marine and estuarine macrofauna. Arch. environ. Contam. Toxicol. 9, 733–741 (1980)PubMedGoogle Scholar
  55. Mitterer, R. M.: Amino acid composition and metal binding capability of the skeletal protein of corals. Bull. mar. Sci. 28, 173–180 (1978)Google Scholar
  56. Moore, P. G.: Inorganic particulate suspensions in the sea and their effects on marine animals. Oceanogr. mar. biol. A. Rev. 15, 225–363 (1977)Google Scholar
  57. Muscatine, L., L. A. McCloskey and R. E. Marian: Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981)Google Scholar
  58. Pearse, V. B. and L. Muscatine: Role of symbiotic algae (zooxanthellae) in coral calcification. Biol. Bull. mar. biol. Lab., Woods Hole 14, 350–363 (1971)Google Scholar
  59. Pearson, R. G.: Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981)Google Scholar
  60. Peters, E. C., P. A. Meyers, P. P. Yevich and N. J. Blake: Bioaccumulation and histopathological effects of oil on a stony coral. Mar. Pollut. Bull. 12, 333–339 (1981)CrossRefGoogle Scholar
  61. Peterson, G. L.: A simplication of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356 (1977)PubMedGoogle Scholar
  62. Pickering, A. D., T. G. Pottinger and P. Christie: Recovery of the brown trout, Salmo trutta L., from acute handling stress: a time-course study. J. Fish. Biol. 20, 229–244 (1982)Google Scholar
  63. Powell, E. N., S. J. Connor, J. J. Kendall Jr., C. E. Zastrow and T. J. Bright: Recovery by the coral Acropora cervicornis after drilling mud exposure. The free amino acid pool. Arch. environ. Contam. Toxicol. 13, 243–258 (1984a)Google Scholar
  64. Powell, E. N., M. Kasschau, E. Chen, M. Koenig and J. Pecon: Changes in the free amino acid pool during environmental stress in the gill tissue of the oyster, Crassostrea virginica. Comp. Biochem. Physiol. 71A, 591–598 (1982)CrossRefGoogle Scholar
  65. Powell, E. N., J. J. Kendall Jr., S. J. Connor, C. E. Zastrow and T. J. Bright: Effect of eight outer continental shelf drilling muds on the calcification rate and free amino acid pool of the coral Acropora cervicornis. Bull. environ. Contam. Toxicol. 33, 362–372 (1984b)PubMedGoogle Scholar
  66. Preece, A.: A manual for histologic technicians, 428 pp. Boston: Little, Brown and Company 1972Google Scholar
  67. Rinkevich, B. and Y. Loya: Short-term fate of photosynthetic products in a hermatypic coral. J. exp. mar. Biol. Ecol. 73, 175–184 (1983)CrossRefGoogle Scholar
  68. Roberts, H. H., L. J. Rouse Jr., N. D. Walker and J. H. Hudson: Cold-water stress in Florida Bay and northern Bahamas: a product of winter cold-air outbreaks. J. Sediment. Petrol. 52, 145–155 (1982)Google Scholar
  69. Rogers, C. S.: Sublethal and lethal effects of sediments applied to common Caribbean reef corals in the field. Mar. Pollut. Bull. 14, 378–382 (1983)CrossRefGoogle Scholar
  70. Roth, A. A., C.D. Clausen, P. Y. Yahiku, V. E. Clausen and W. W. Cox: Some effects of light on coral growth. Pac. Sci. 36, 65–81 (1982)Google Scholar
  71. Roy, K. J. and S. V. Smith: Sedimentation and coral reef development in turbid water: Fanning Lagoon. Pac. Sci. 25, 234–248 (1971)Google Scholar
  72. Sheppard, C. R. C.: Coral fauna of Diego Garcia Lagoon, following harbour construction. Mar. Pollut. Bull. 11, 227–230 (1980)CrossRefGoogle Scholar
  73. Shinn, E. A., J. H. Hudson, D. M. Robbin and C. K. Lee: Drilling mud plumes from offshore drilling operations: Implications for coral survival. In: Marine environmental pollution, I. Hydrocarbons, pp 471–496. Ed. by R. A. Geyer, New York: Elsevier Scientific Publishing Company 1980Google Scholar
  74. Squires, E. J., D. E. Hall and L. A. Feltham: Seasonal changes in plasma amino acid levels in the winter flounder (Pseudolpleuronectes americanus). Can. J. Zool. 57, 1438–1442 (1979)Google Scholar
  75. Streamer, M.: Urea and arginine metabolism in the hard coral, Acropora acuminata. Comp. Biochem. Physiol. 65B, 669–674 (1980)Google Scholar
  76. Taylor, D. L.: Intra-colonial transport of organic compounds and calcium in some Atlantic reef corals. In: Proc., Third Int. Coral Reef Symp., pp 431–436. Miami, Florida: Rosenstiel School of Marine and Atmospheric Science, University of Miami 1977Google Scholar
  77. Theisen, B. F.: Feeding rate of Mytilus edulis L. (Bivalvia) from different parts of Danish waters of different turbidity. Ophelia 16, 221–232 (1977)Google Scholar
  78. Underwood, A. J.: Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. mar. Biol. A. Rev. 19, 513–605 (1981)Google Scholar
  79. Winer, B. J.: Statistical principles in experimental design, 907 pp. New York: McGraw-Hill Book Company 1971Google Scholar
  80. Wong, V. W. T. and P. S. Rainbow: A modified Lowry assay to measure levels of proteins lacking aromatic amino acid residues (e.g. metallothioneins). Comp. Biochem. Physiol. 78B, 351–353 (1984)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. J. KendallJr.
    • 1
  • E. N. Powell
    • 1
  • S. J. Connor
    • 1
  • T. J. Bright
    • 1
  • C. E. Zastrow
    • 1
  1. 1.Department of OceanographyTexas A&M UniversityCollege StationUSA

Personalised recommendations