Advertisement

Marine Biology

, Volume 87, Issue 1, pp 13–18 | Cite as

Substrate catabolism related to reproduction in the bay scallop Argopecten irradians concentricus, as determined by O/N and RQ physiological indexes

  • B. J. Barber
  • N. J. Blake
Article

Abstract

Weight specific rates of oxygen consumption carbon dioxide production, and ammonia-N excretion, measured for a Florida population of the bay scallop Argopecten irradians concentricus between May and September, 1982 and October and November, 1983 were significantly correlated (P<0.0005) to environmental factors that co-varied seasonally with metabolic shifts related to reproduction. Mean O/N and CO2/O2 (RQ) molar ratios indicates that scallop energy metabolism varied over the course of the reproductive cycle. Resting stage individuals (May-early June) had RQ values close to 0.7, indicative of a predominantly lipid-based metabolism. During the initial stages of gametogenesis (late June-early July) scallops catabolized primarily carbohydrate, as evidenced by maximum O/N (>22) values and RQ values close to 1.0 RQ values >1.0 indicated a possible carbohydrate to lipid conversion during the period of cytoplasmic growth (late July-early September). As gametes matured and spawning commenced (late September-November), metabolism became primarily protein based, as indicated by O/N and RQ values around 9.0 and 0.8, respectively. This pattern of substrate catabolism supports existing data on the storage and utilization of specific energy reserves with respect to reproduction in this species.

Keywords

Carbohydrate Carbon Dioxide Specific Energy Specific Rate Reproductive Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Ansell, A. D.: Seasonal changes in biochemical composition of the bivalve Chlamys septemradiata from the Clyde Sea Area. Mar. Biol. 25, 85–99 (1974)Google Scholar
  2. Ansell, A. D. and P. Sivadas: Some effects of temperature and starvation on the bivalve Donax vittatus (Da Costa) in experimental laboratory populations. J. exp. mar. Biol. Ecol. 13, 229–262 (1973)CrossRefGoogle Scholar
  3. Barber, B. J. and N. J. Blake: Energy storage and utilization in relation to gametogenesis in Argopecten irradians concentricus (Say). J. exp. mar. Biol. Ecol. 52, 121–134 (1981)CrossRefGoogle Scholar
  4. Barber, B. J. and N. J. Blake: Growth and reproduction of the bay scallop, Argopecten irradians (Lamarck), at its southern distributional limit. J. exp. mar. Biol. Ecol. 66, 247–256 (1983)CrossRefGoogle Scholar
  5. Bayne, B. L.: Physiological changes in Mytilus edulis L. induced by temperature and nutritive stress. J. mar. biol. Ass. U.K. 53, 39–58 (1973a)Google Scholar
  6. Bayne, B. L.: Aspects of the metabolism of Mytilus edulis during starvation. Neth. J. Sea Res. 7, 399–410 (1973b)CrossRefGoogle Scholar
  7. Bayne, B. L.: Aspects of reproduction in bivalve molluscs. In: Estuarine processes, Vol. 1. Uses, stresses and adaptation to the estuary, pp 432–448. Ed. by M. L. Wiley New York: Academic Press 1976Google Scholar
  8. Bayne, B. L., C. J. Bayne, T. C. Carefoot and R. J. Thompson: The physiological ecology of Mytilus californianus Conrad 1. Metabolism and energy balance Oecologia (Berl.) 22, 211–228 (1976)Google Scholar
  9. Bayne, B. L., A. Bubel, P. A. Gabbott, D. R., Livingstone, D. M. Lowe and M. N. Moore: Glycogen utilization and gametogenesis in Mytilus edulis L. Mar. Biol. Lett. 3 89–105 (1982)Google Scholar
  10. Bayne, B. L. and C. Scullard: Rates of nitrogen excretion by species of Mytilus (Bivalvia: Mollusca). J. mar. biol. Ass. U.K. 57, 355–369 (1977)Google Scholar
  11. Bayne, B. L. and R. J. Thompson: Some physiological consequences of keeping Mytilus edulis in the laboratory. Helgoländer wiss. Meeresunters. 20, 526–552 (1970)Google Scholar
  12. Bayne, B. L., J. Widdows and R. J. Thompson: Physiological integrations. In: Marine mussels, pp 261–299. Ed. by B. L. Bayne. Cambridge, Cambridge University Press 1976Google Scholar
  13. Bruce, J. R.: The respiratory exchange of the mussel (Mytilus edulis, L.). Biochem. J. 20, 829–846 (1926)Google Scholar
  14. Clark, L. C., R. Wolf, D. Granger and Z. Taylor: Continuous recording of blood oxygen tensions by polarography. J. appl. Physiol. 6, 189–193 (1953)PubMedGoogle Scholar
  15. Comely, C. A.: Seasonal variations in the flesh weights and biochemical content of the scallop Pecten maximus (L.) in the Clyde Sea Area. J. Cons. int. Explor. Mer 35, 281–295 (1974)Google Scholar
  16. Conover, R. J. and E. D. S. Corner: Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U.K. 48, 49–75 (1968)Google Scholar
  17. Corner, E. D. S. and C. B. Cowey: Biochemical studies on the production of marine zooplankton. Biol. Rev. 43, 393–426 (1968)PubMedGoogle Scholar
  18. Edmond, J. M.: High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration. Deep-Sea Res. 17, 737–750 (1970)Google Scholar
  19. Gabbott, P. A.: Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In: Proc. 9th Eur. mar. Biol. Symp., pp 191–211. Ed. by H. Barnes. Aberdeen: Aberdeen Univ. Press 1975Google Scholar
  20. Gabbott, P. A.: Energy metabolism. In: Marine mussels, pp 293–355. Ed. by B. L. Bayne. Cambridge: Cambridge University Press 1976Google Scholar
  21. Gabbott, P. A.: Developmental and seasonal metabolic activities in marine molluscs. In: The Mollusca, Vol. 2, pp 165–217. Ed. by P. W. Hochachka. New York: Academic Press 1983Google Scholar
  22. Gabbott, P. A. and B. L. Bayne: Biochemical effects of temperature and nutritive stress on Mytilus edulis L. J. mar. biol. Ass. U. K. 53, 269–286 (1973)Google Scholar
  23. Giese, A. C.: Comparative physiology: annual reproductive cycles of marine invertebrates. A. Rev. Physiol. 21, 547–576 (1959)CrossRefGoogle Scholar
  24. Giese, A. C.: A new approach to the biochemical composition of the molluse body. Oceanogr. mar. Biol. A. Rev. 7, 175–229 (1969)Google Scholar
  25. Kruger, F.: Zur Frage der Größenabhängigkeit des Sauerstoffverbrauchs von Mytilus edulis L. Helgoländer wiss. Meeresunters. 7, 125–148 (1969)Google Scholar
  26. Lyman, J.: Changes in pH and total CO2 in natural waters. Limnol. Oceanogr. 6, 80–82 (1961)Google Scholar
  27. Mann, K.: A comparison of morphometric, biochemical, and physiological indexes of condition in marine bivalve molluscs. In: Energy and environmental stress in aquatic systems, pp 484–497. Ed by J. H. Thorp and J. W. Gibbons. US Dept. of Energy, Technical Info. Center (1978)Google Scholar
  28. Mann, R.: Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures J. mar. biol. Ass. U.K. 59, 95–110 (1979)Google Scholar
  29. Mayzaud, P.: Respiration and nitrogen excretion of zooplankton. II. Studies of the metabolic characteristics of starved animals. Mar. Biol. 21, 19–28 (1973)Google Scholar
  30. Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric, pressure. Limnol. Oceanogr. 18, 897–907 (1973)Google Scholar
  31. Mickel, T. J., L. B. Quetin and J. J. Childress: Construction of a polarographic oxygen sensor in the laboratory. In: Polarographic oxygen sensors, pp 81–85. Ed. by E. Gnaiger, and H. Forstner. Berlin: Springer-Verlag 1983Google Scholar
  32. Mori, K.: Changes of oxygen consumption and respiratory quotient in the tissues of oysters during the stages of sexual maturation and spawning. Tohoku J. agric. Res. 19, 136–143 (1968)Google Scholar
  33. Mori, K.: Seasonal variation in physiological activity of scallops under culture in the coastal waters of Sanriku District, Japan, and a physiological approach of a possible cause of their mass mortality. Bull. mar. biol. Sta. Asamushi 15, 59–79 (1975)Google Scholar
  34. Pollero, R. J., M. E. Re and R. R. Brenner: Seasonal changes of the lipids of the mollusc Chlamys tehuelcha. Comp. Biochem. Physiol. 64A, 257–263 (1979)CrossRefGoogle Scholar
  35. Richardson, H. B.: The respiratory quotient. Physiol. Rev. 9, 61–125 (1929)Google Scholar
  36. Riley, J. P. and R. Chester: Introduction to marine chemistry, 465 pp. New York: Academic Press 1971Google Scholar
  37. Robinson, W. E., W. E. Wehling, M. P. Morse and G. C. McLeod: Seasonal changes in soft-body component indices and energy reserves in the Atlantic deep-sea scallop, Placopecten magellanicus. Fish. Bull. U.S. 79, 449–458 (1981)Google Scholar
  38. Sastry, A. N.: Temperature effects in reproduction of the bay scallop, Aequipecten irradians Lamarck. Biol. Bull. mar. biol. Lab., Woods Hole 130, 118–134 (1966)Google Scholar
  39. Sastry, A. N.: The relationships among food, temperature, and gonad development of the bay scallop Aequipecten irradians Lamarck. Physiol. Zool. 41, 44–53 (1968)Google Scholar
  40. Sastry, A. N.: Pelecypoda (excluding Ostreidae). In: Reproduction of marine invertebrates, pp 113–292. Ed. by A. C. Giese and J. S. Pearse. New York: Academic Press 1979Google Scholar
  41. Smith, S. V. and G. S. Key: Carbon dioxide and metabolism in marine environments. Limnol. Oceanogr. 20, 493–495 (1975)Google Scholar
  42. Stickle, W. B. and B. L. Bayne: Effects of temperature and salinity on oxygen consumption and nitrogen excretion in Thais (Nucella) lapillus (L.). J. exp. mar. Biol. Ecol. 58, 1–17 (1982)CrossRefGoogle Scholar
  43. Taylor, A. C. and T. J. Venn: Seasonal variation in weight and biochemical composition of the tissues of the queen scallop, Chlamys opercularis, from the Clyde Sea Area J. mar. biol. Ass. U.K. 59, 605–621 (1979)Google Scholar
  44. Thomas, R. F. and R. L. Booth: Selective electrode measurement of ammonia in water and wastes Envir. Sci. Technol. 7, 523–526 (1973)Google Scholar
  45. Vooys, C. G. N., de: The influence of temperature and time of year on the oxygen uptake of the sea mussel Mytilus edulis. Mar. Biol. 36, 25–30 (1976)Google Scholar
  46. Wheeler, A. P., P. L., Blackwelder and K. M. Wilbur: Shell growth in the scallop Argopecten irradians. I. Isotope incorporation with reference to diurnal growth. Biol. Bull. mar. biol. Lab., Woods Hole. 148 472–482 (1975)Google Scholar
  47. Widdows, J.: Combined effects of body size, food concentration and season on the physiology of Mytilus edulis J. mar. biol. Ass. U.K. 58, 109–124 (1978)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • B. J. Barber
    • 1
  • N. J. Blake
    • 1
  1. 1.Department of Marine ScienceUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations