Marine Biology

, Volume 87, Issue 1, pp 1–6 | Cite as

Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects

  • C. Descolas-Gros
  • M. R. Fontugne


We measured the activity of three carboxylases: RuBP carboxylase, PEP carboxylase and PEP carboxykinase of marine phytoplankton species in culture and in natural communities. Activities of the three carboxylases were measured simultaneously with stable carbon-isotope ratios. The enzymatic activities have been used to estimate the importance of β carboxylation and its impact on the 13C:12C ratio (expressed as δ13C). The marine phytoplankton species in culture were Fragilariopsis kerguelensis, Nitzschia turgiduloides, Skeletonema costatum, Phaeodactylum tricornutum, Isochrysis galbana, Dunaliella marina, and Prorocentrum micans, and the field samples were collected from different depths off the coast of Portugal (August/September, 1981). Our results indicate that, as in terrestrial plants, the δ13C value is a good indicator of the extent of β carboxylation. RuBP carboxylase activity was always predominant, whereas the δ13C value never reached values typical of the C4 pathway. The β carboxylases could be PEP carboxylase (in dinoflagellates) or PEP carboxykinase (in diatoms). β carboxylation increased at the end of the exponential growth phase in a diatom culture and with increased biomass in natural samples. We interpret these increases as an adaptative response mechanism to poor environmental conditions, especially to low light intensity.


Dinoflagellate Dunaliella Skeletonema Phaeodactylum Tricornutum Isochrysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Appleby, G., J. Colbeck, E. S. Holdsworth and H. Wadman: β carboxylation enzymes in marine phytoplankton and isolation and purification of pyruvate and carboxylase from Amphidinium carterae (Dinophyceae). J. Phycol. 16, 290–295 (1980)Google Scholar
  2. Beardall, J., D. Mukerji, H. E. Glover and I. Morris: The path of carbon in photosynthesis by marine phytoplankton. J. Phycol. 12, 409–417 (1976)Google Scholar
  3. Benedict, C. R.: Nature of obligate photoautotrophy. A. Rev. Pl. Physiol. 29, 67–93 (1978)CrossRefGoogle Scholar
  4. Bradshaw, A. L. and P. G. Brewer: The titration of sea-water with strong acid. Tech. Rep. Woods Hole oceanogr. Instn 1980Google Scholar
  5. Chesselet, R., M. R. Fontugne, P. Buat-Menard, U. Ezat and C. E. Lambert. The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotopic composition. Geophys. Res. Lett. 8, 345–348 (1981)Google Scholar
  6. Descolas-Gros, C.: Les voies d'incorporation photosynthétique du carbone du phytoplancton. Signification écologique de l'activité des carboxylases en milieu marin. Comparaison avec le rapport isotopique 13C:12C du carbone organique du phytoplancton, 117 pp. Thèse Doctorat ès Sciences, Paris VI, 1983Google Scholar
  7. Dyrssen, D. and C. G. Sillen: Alkalinity and total carbonate in sea-water; a plea for P. T. independent data. Tellus 19, 113–121 (1967)Google Scholar
  8. Brunet, C. et A. Poisson: Alcalinité totale-carbone inorganique total. Densité. Publs Cent. natn. Exploit. Océans (CNEXO) 25, 49–51 (1983)Google Scholar
  9. Edmond, J. M.: High precision determination of titration alkalinity and total CO2 of sea-water by potentiometric titration. Deep-Sea Res. 17, 737–750 (1970)Google Scholar
  10. Fontugne, M. R.: Les isotopes stables du carbone organique dans l'océan. Applications à la paléoclimatologie, 228 pp. Thèse Doctorat ès Sciences, Orsay 1983Google Scholar
  11. Fontugne, M. R. and J. C. Duplessy: Carbon isotope ratio of marine plankton related to surface water masses. Earth planet. Sci. Lett. 41, 365–371 (1978)CrossRefGoogle Scholar
  12. Fontugne, M. R. and J. C. Duplessy: Organic isotopic fractionation by marine plankton in the temperature range-1 to 31°C. Oceanol. Acta 4, 85–90 (1981)Google Scholar
  13. Gifford, R. M.: A comparison of potential photosynthesis productivity and yield of plant species with differing photosynthetic metabolism. Aust. J. Pl. Physiol. 1, 107–117 (1974)Google Scholar
  14. Gross, F.: Notes on the culture of some marine plankton organisms. J. mar. biol. Ass. U.K. 21, 753–768 (1937)Google Scholar
  15. Guillard, R. R. L. and J. H. Ryther: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962)PubMedGoogle Scholar
  16. Holdsworth, E. S. and J. Colbeck: The pattern of carbon fixation in the marine unicellular alga Phaeodactylum tricornutum. Mar. Biol. 38, 189–199 (1976)Google Scholar
  17. Holdsworth, E. S. and K. Bruck: Enzymes concerned with β carboxylation in marine phytoplankter purification and properties of phosphoenopyruvate carboxykinase. Archs Biochem. Biophys. 182, 87–94 (1977)Google Scholar
  18. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes and J. D. H. Strickland: Fluorometric determination of chlorophyll. J. Cons. perm. int. Explor. Mer 30, 3–15 (1965)Google Scholar
  19. Jolivet, E.: Les différentes modalités de carboxylation photosynthétique chez les espèces de type C3 et de type C4. Physiologie vég. 14, 563–594 (1976)Google Scholar
  20. Kaplan, A., M. R. Badger and J. A. Berry: Photosynthesis and the intracellular inorganic carbon pool in the blue-green alga Anabaena variabilis: response to external CO2 concentration. Planta 149, 219–226 (1980)Google Scholar
  21. Kelly, G. J. and E. Latzko: Regulatory aspects of photosynthetic carbon metabolism. A. Rev. Pl. Physiol. 27, 181–205 (1976)CrossRefGoogle Scholar
  22. Kremer, B. P. and R. Berks: Photosynthesis and carbon metabolism in marine and freshwater diatoms. Z. PflPhysiol. 87, 149–165 (1978)Google Scholar
  23. Lavergne, D., E. Bismuth and M. L. Champigny: Physiological studies on two cultivars of Pennisetum: P. americanum 23DB, a cultivated species and P. mollissimum, a wild species. I. Photosynthetic carbon metabolism. Z. PflPhysiol., 91, 291–303 (1979a)Google Scholar
  24. Lavergne, D., E. Bismuth, E. Sarda and M. L. Champigny: Physiological studies on two cultivars, of Pennisetum: P. americanum 23 DB, a cultivated species and P. mollissimum, a wild species. II. Effects of leaf age on biochemical characteristics and activities of the enzymes associated with the photosynthetic carbon metabolism. Z. PflPhysiol. 93, 159–170 (1979b)Google Scholar
  25. Li, W. K. W., H. E. Glover and I. Morris: Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean sea. Limnol. Oceanogr. 25, 447–456 (1980)Google Scholar
  26. Médiprod Groupe. Remontées d'eaux sur les côtes atlantiques du Portugal. Campagne RCA I. (28 août-19 septembre 1981). Publs Cent. natn. Exploit. Océans (CNEXO) (Sér. Résult. Campagnes Mer) 25, 1–115 (1983)Google Scholar
  27. Miller, A. G. and B. Colman: Evidence for 3- transport by the blue green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol., Lancaster, Pa. 65, 397–402 (1980)Google Scholar
  28. Morris, I.: Paths of carbon assimilation in marine phytoplankton. In: Primary productivity in the sea, pp 139–159. Ed. by P. G. Falkowski. New York: Plenum Press 1980Google Scholar
  29. Morris, I., A. E. Smith and H. E. Glover: Products of photosynthesis in phytoplankton off the Orinoco river and in the Caribbean Sea. Limnol. Oceanogr. 26, 1034–1044 (1981)Google Scholar
  30. Moyse, A.: Les types métaboliques des plantes C4 et CAM. Comparaison avec les plantes C3. Physiologie vég. 14, 533–550 (1976)Google Scholar
  31. Mukerji, D. and I. Morris: Photosynthetic carboxylating enzymes in Phaeodactylum tricornutum: assay methods and properties. Mar. Biol. 36, 199–206 (1976)Google Scholar
  32. Osmond, C. B.: Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim. biophys. Acta 639, 77–98 (1981)Google Scholar
  33. Platt, T., D. V. Subba Rao, J. C. Smith, W. K. Li, B. Irwin, E. P. W. Horne and D. D. Sameoto: Photosynthetically competent phytoplankton from the aphotic zone of the deep ocean Mar. Ecol. Prog. Ser. 10, 105–110 (1983)Google Scholar
  34. Rau, G. H., R. E. Sweeney and I. R. Kaplan: Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep-Sea Res. 29, 1035–1039 (1982)CrossRefGoogle Scholar
  35. Sackett, W. M., B. J. Eadie and M. E. Exner: Stable isotope composition of organic carbon in recent Antarctic sediments In: Advances in organic chemistry, pp 661–671. Ed. by B. Tissot and F. Bienner. Paris: Technip 1974. (Procès 6ème congrès international de géochimie organique, Rueil Malmaison, France, 1973)Google Scholar
  36. Sackett, W. M., W. R. Eckelmann, M. L. Bender and A. W. H. Be: Temperature dependence of carbon isotopes in marine plankton and sediments. Science, N.Y. 148, p. 235 (1965)Google Scholar
  37. Smith, J. C., T. Platt and W. G. Harrison: Photoadaptation of carboxylating enzymes and photosynthesis during a spring bloom. Prog. Oceanogr. 12 425–459 (1983)CrossRefGoogle Scholar
  38. Troughton, J.H.: ¢13C as an indicator of carboxylation reactions. In: Encyclopedia of plant physiology, photosynthesis II Vol. 6. pp 140–147. Ed. by M. Gibbs and E. Latzko. Berlin: Springer-Verlag 1979Google Scholar
  39. Wong, W. W. L.: Carbon isotope fractionation by marine phytoplankton, 116 pp. PhD thesis, Texas A&M University 1976Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • C. Descolas-Gros
    • 1
  • M. R. Fontugne
    • 2
  1. 1.Laboratoire AragoUniversité Pierre et Marie CurieBanyuls-sur-MerFrance
  2. 2.Centre des Faibles RadioactiviésLaboratoire Mixte CEA-CNRSGif-sur-YvetteFrance

Personalised recommendations