Skip to main content
Log in

Calcium and magnesium carbonate concentrations in different growth regions of gorgonians

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Four of the most abundant gorgonian species from the southwestern Cape waters, Eunicella papillosa (Esper, 1797), E. alba (Esper, 1797), E. tricoronata Velimirov, 1971 and Lophogorgia flamea (Ellis and Solander, 1786) were analysed for Ca and Mg by atomic absorption spectroscopy (AAS) and ethylenediaminetetraacetate (EDTA) titration. The total mineral content in the peripheral tissues, excluding the axial skeleton, expressed as the sum of CaCO3 and MgCO3 of dry matter was between 65.5 and 83.5%. The mineral content varied in different growth regions and all specimens showed a higher degree of mineralization at the base than at the branch tips. The MgCO3 concentration varied with genus and species and was between 9 and 11 mol %. The variation of the MgCO3 concentration within different growth regions of the same species was small and generally did not exceed 0.8 mol %. From the branch to the stem, CaCO3 and total mineral content was found to increase. The CaCO3:MgCO3 rations in different growth regions of all species indicated that the composition of the mesoskeleton with regard to the relative concentration of CaCO3 and MgCO3 is constant throughout the animal. Mineralogically, the mesoskeleton consists of high magnesian calcite as identified by X-ray diffraction. MgCO3 concentrations determined by the peak shift method and by AAS were in fair agreement. The MgCO3 data in gorgonian samples from the cold Atlantic Ocean and the warmer Indian Ocean show a linear relationship between water temperature and MgCO3 concentration already demonstrated by Chave (1954). However, our data were consistently lower by 1 to 2% than expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andrews, W.R.H. and D.L. Cram: Combined aerial and shipboard upwelling survey in the Benguela Current. Nature, Lond. 244, 902–904 (1969)

    Google Scholar 

  • Balard, M.: Note pour servir à l'histoire naturelle de l'iode. Annls Chim. Phys. (Ser. 2) 28, 178–181 (1825)

    Google Scholar 

  • Bang, N.D.: Oceanic environment of South Africa. Stand. Encycloped. S. Afr. 8, 282–286 (1973a)

    Google Scholar 

  • —: Characteristics of an intense ocean frontal system in the upwelling regime west of Cape Town. Tellus 25, 256–265 (1973b)

    Google Scholar 

  • Bisque, R.E.: Analysis of carbonate rocks for calcium, magnesium, iron and aluminium with EDTA. J. Sedim. Petrol. 31, 113–122 (1961)

    Google Scholar 

  • Block, R.J. and D. Bolling: The amino acid composition of keratins. The composition of gorgonin, spongin, turtle scutes and other keratins. J. biol. Chem. 127, 685–693 (1939)

    Google Scholar 

  • Böhm, E.L.: Studies on the mineral content of calcareous algae. Bull. mar. Sci. 23, 177–190 (1973)

    Google Scholar 

  • Bütschli, O.: Untersuchungen über organische Kalkgebilde nebst Bemerkungen über organische Kieselgebilde. Abh. Akad. Wiss. Göttingen (Math.-Phys. Kl.) 6 (3), 1–177 (1908)

    Google Scholar 

  • Cary, L.R.: The Gorgonacea as a factor in the formation of coral reefs. Publs Carnegie Inst. 213, 341–362 (1918)

    Google Scholar 

  • Chave, K.E.: Aspects on the biogeochemistry of magnesium. 1. Calcareous marine organisms. J. Geol. 62, 266–283 (1954)

    Google Scholar 

  • Clark, F.W. and W.C. Wheeler: The inorganic constituents of marine invertebrates. Prof. Pap. U.S. geol. Surv. 124, 1–62 (1922)

    Google Scholar 

  • Darbyshire, J.A.: A hydrological investigation of the Agulhas Current area. Deep-Sea Res. 11, 781–815 (1974)

    Google Scholar 

  • Dreschel, H.F.E.: Beitrãge zur Chemie einiger Seetiere. II. Über das Achsenskelett der Gorgonia cavolinii. Z. Biol. 33, 85–107 (1896)

    Google Scholar 

  • Ellis, J. and D. Solander: The natural history of zoophytes, 208 pp. London: 1786

  • Esper, E.: Fortsetzung der Pflanzenthiere, 230 pp. Nürnberg: 1797

  • Flemming, B.W.: Rocky bank — evidence for a relict wave-cut platform. Ann. S. Afr. Mus. 71 (1976). (In press)

  • Ginsburg, R.N.: Environmental relationship of grain size and constituent particles in some South Florida carbonate sediments. Bull. Am. Ass. Petrol. Geol. 40, 2384–2427 (1956)

    Google Scholar 

  • Goreau, T.F.: The physiology of skeleton formation in corals. 1. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull. mar. biol. Lab., Woods Hole 116, 59–75 (1959)

    Google Scholar 

  • —: On the relation of calcification to primary productivity in reef building organisms. In: The biology of hydra, pp 269–285. Ed. by H.M. Lenhoff and W.F. Loomis. Miami: University Press 1961

    Google Scholar 

  • Goldsmith, J.R., D.L. Graf and H.C. Heard: Lattice constants of the calcium-magnesium carbonates. Am. Miner. 46, 453–457 (1961)

    Google Scholar 

  • Lemoine, M.P.: Structure anatomique des mélobesiées. Annls Inst. océanogr., Monaco 2, 1–213 (1910)

    Google Scholar 

  • Marks, M.H., R.S. Bear and C.H. Blake: X-ray diffraction evidence of collagen-type protein fibres in the Echinodermata, Coelenterata and Porifera. J. exp. Zool. 111, 55–78 (1949)

    Google Scholar 

  • Milliman, T.D.: Recent sedimentary carbonates, Part. 7. Marine carbonates, pp 1–15. Ed. by J.D. Milliman. Heidelberg: Springer Verlag 1974

    Google Scholar 

  • Phillips, A.H.: Analytical search for metals in Tortugas marine organisms. Publs Carnegie Instn 312, 95–99 (1922)

    Google Scholar 

  • Roche, J., S. Andre et G. Salvatore: Métabolism de l'iode et formation de la scleroproteine iodée (gorgonine) du squelette corné chez Eunicella verrucosa Pallas. C.r. Séanc. Soc. Biol. 153, 1747–1751 (1959)

    Google Scholar 

  • —, et M. Eysseric-Lafon: Biochemie comparée des scleroproteines iodées des anthozoaries. Bull. Soc. Chim. biol. 33, 1437–1447 (1951)

    Google Scholar 

  • Terentieva, K.F.: la composition minerale des squelettes de certaines éspèces d'echinodermes contemporaines. Trudý biogeokhim. Lab. 2, 1–45 (1932)

    Google Scholar 

  • Velimirov, B.: Beitrag zur Systematik der südafrikanischen Gorgonien. Zool. Anz. 187, 266–273 (1971)

    Google Scholar 

  • Velimirov, B. Variations in growth forms of Eunicella cavolinii (Octocorallia) related to intensity of water movement. J. exp. mar. Biol. Ecol. 21, (1976). (In press)

  • Vinogradov, A.P.: La composition chimique élémentaire des organismes vivants et le systeme périodique des éléments chimiques. C. r. hebd. Séanc. Acad. Sci., Paris. 197, 1673–1694 (1933)

    Google Scholar 

  • —: The elementary chemical composition of marine organisms. Mem Sears Fdn mar. Res. 12, 1–647 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velimirov, B., Böhm, E.L. Calcium and magnesium carbonate concentrations in different growth regions of gorgonians. Marine Biology 35, 269–275 (1976). https://doi.org/10.1007/BF00396874

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396874

Keywords

Navigation