Advertisement

Marine Biology

, Volume 63, Issue 1, pp 73–77 | Cite as

Initiation of feeding and salinity tolerance in the pacific lamprey Lampetra tridentata

  • J. E. Richards
  • F. W. H. Beamish
Article

Abstract

Changes in salinity tolerance were determined during metamorphosis in Lampetra tridentata. Lampreys in Phase 5 of metamorphosis were unable to withstand salinities>13.4‰S, while those in Phase 6 survived direct transfer to sea water (30‰S). This abrupt change in tolerance coincided with the opening of the foregut lumen. Parasitic feeding began at the end of Phase 7 of metamorphosis following the completion of tooth development.

Keywords

Abrupt Change Salinity Tolerance Direct Transfer Tooth Development Pacific Lamprey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. American Public Health Association: Standard methods for the examination of water and wastewater. 874 pp. Washington, D.C. 1971Google Scholar
  2. Applegate, V.C.: Natural history of the sea lamprey (Petromyzon marinus) in Michigan. 237 pp. U.S. Fish Wildl. Serv., Spec. Sci. Rep., Fish Ser. 55 1950Google Scholar
  3. Balon, E.K.: Terminology of intervals in fish development. J. Fish. Res. Bd Can. 32, 1663–1670 (1975)Google Scholar
  4. Beamish, F.W.H.: Biology of the North American anadromous sea lamprey, Petromyzon marinus L. Can. J. Fish. Aquat. Sci. 37, 1924–1943 (1980)Google Scholar
  5. Beamish, F.W.H. and I.C. Potter: Timing of change in the blood, morphology and behaviour of Petromyzon marinus during metamorphosis. J. Fish. Res. Bd Can. 29, 1277–1282 (1972)Google Scholar
  6. Beamish, F.W.H. and I.C. Potter: The biology of the anadromous sea lamprey (Petromyzon marinus) in New Brunswick. J. Zool (Lond.) 177, 57–72 (1975)Google Scholar
  7. Beamish, F.W.H., P.D. Strachan and E. Thomas: Osmotic and ionic performance of the anadromous sea lamprey, Petromyzon marinus. Comp. Physiol. Biochem. 60A, 435–443 (1978)Google Scholar
  8. Beamish, R.J.: The biology of the river lamprey (Lampetra ayresi) and the Pacific lamprey (Lampetra tridentata) during the parasitic phase of their life cycles in waters off the west coast of Canada. Can. J. Fish. Aquat. Sci. 37, 1906–1923 (1980)Google Scholar
  9. Creaser, C.W. and C.S. Hann: The food of larval lampreys. Pap. Mich. Acad. Sci. 10, 433–437 (1929)Google Scholar
  10. Damas, H.: Contribution a l'etude de la metamorphose de la tête de la lamproie. Arch. Biol., (Paris) 46, 171–227 (1935)Google Scholar
  11. Fontaine, M.: Sur le parallelisme existant chez les poissons entre leur resistance aux variations de salinite et l'independance de leur milieu interieur. Acad. Sci., Paris, C.R. Hebd. Seances 191, 196–798 (1930a)Google Scholar
  12. Fontaine, M.: Recherches sur le milieu interieur de la lamproi marine (Petromyzon marinus). Ses variations en fonction de celles du milieu exterieur. Acad. Sci., Paris, C.R. Hebd. Seances 191, 680–682 (1930b)Google Scholar
  13. Galloway, T.McL.: The osmotic pressure and saline content of the blood of Petromyzon fluviatilis. J. exp. Biol. 10, 313–316 (1933)Google Scholar
  14. Hardisty, M.W.: Some aspects of osmotic regulation in lampreys. J. exp. Biol. 33, 431–447 (1956)Google Scholar
  15. Hardisty, M.W. and I.C. Potter: The general biology of adult lampreys. pp 127–206; In: M.W. Hardisty and I.C. Potter The biology of lampreys. Vol. 1, London: Academic Press 1971Google Scholar
  16. Hardisty, M.W., I.C. Potter and R. Sturge: A comparison of the metamorphosing and macrophthalmia stages of the lampreys Lampetra fluviatilis and L. planeri. J. Zool. (Lond.) 162, 383–400 (1970)Google Scholar
  17. Humason, G.L.: Animal tissue techniques. 661 pp. San Francisco: W.H. Freeman Co. 1979Google Scholar
  18. Keibel, F.: Entwicklungsgeschichte des Vorderdarmes und des Pankreas beim Bachneunauge (Lampetra (Petromyzon) planeri) und beim Flussneunauge (Lampetra (Petromyzon) fluviatilis). Z. Mikrosk. Anat. Forsch. 8, 408–476 (1927)Google Scholar
  19. Kraentzel, E.: Contribution a l'etude de la lamproie fluviatile Lampetra Petromyzon fluviatilis L. I. La transformation de l'endostyle en glande thyroide. Arch. Biol. (Paris) 44, 469–517 (1933)Google Scholar
  20. Mallat, J.: Surface morphology and functions of pharyngeal structures in the larval Petromyzon marinus. J. Morphol. 162(2), 249–274 (1979)Google Scholar
  21. Manion, P.J.: Diatoms as food of larval sea lampreys in a small tributary of northern Lake Michigan. Trans. Amer. Fish. Soc. 96, 224–226 (1967)Google Scholar
  22. Manion, P.J. and T.M. Stauffer: Metamorphosis of the landlocked sea lamprey, Petromyzon marinus. J. Fish. Res. Bd Can. 27, 1735–1746 (1970)Google Scholar
  23. Manwell, C.: The blood proteins of cyclostomes. A study in phylogenetic and ontogenetic biochemistry. pp 372–455; In: A. Brodal and R. Fange (eds), The biology of myxine. Oslo: Universitetsforlaget 1963Google Scholar
  24. Mathers, J.S. and F.W.H. Beamish: Changes in serum osmotic and ionic concentrations in landlocked Petromyzon marinus. Comp. Biochem. Physiol. 49A, 677–688 (1974)Google Scholar
  25. Moore, J.W. and F.W.H. Beamish: Food of larval sea lamprey (Petromyzon marinus) and American brook lamprey (Lampetra lamottei). J. Fish. Res. Bd Can. 30, 7–15 (1973)Google Scholar
  26. Moriarty, R.J., A.G. Logan and J.C. Rankin: Measurement of single nephron filtration rate in the kidney of the river lamprey, Lampetra fluviatilis L. J. exp. Biol. 77, 57–69 (1978)Google Scholar
  27. Morris, R.: The osmoregulatory ability of the lamprey (Lampetra fluviatilis (L.)) in sea water during the course of its spawning migration. J. exp. Biol. 33, 235–248 (1956)Google Scholar
  28. Morris, R.: General problems of osmoregulation with special reference to cyclostomes. Zool. Soc. Long., Symp 1, 1–16 (1960)Google Scholar
  29. Morris, R.: Osmoregulation. pp 193–239; In: M.W. Hardisty, and I.C. Potter (eds.), The biology of lampreys. Vol. 1, London: Academic Press 1972Google Scholar
  30. Morris, R.: Blood composition and osmoregulation in ammocoete larvae. Can. J. Fish. Aqua. Sci. 37, 1665–1679 (1980)Google Scholar
  31. Nakao, T.: Fine structure of the agranular cytoplasmic tubles in the lamprey chloride cells. Anat. Res. 178, 49–62 (1974)Google Scholar
  32. Nakao, T.: Electron microscopic studies of coated membranes in two types of gill epithelial cells of lampreys. Cell. Tiss. Res. 178, 385–396 (1977)Google Scholar
  33. Peek, W.D. and J.H. Youson: Ultrastructure of chloride cells in young adults of the anadromous sea lamprey, Petromyzon marinus L., in fresh water and during adaptations to sea water. J. Morph. 160, 143–164 (1979)Google Scholar
  34. Pickering, A.D. and R. Morris: Fine structure of the interplatelet area in the gills of the macrophathalmia stage of the river lamprey, Lampetra fluviatilis (L.). Cell Tiss. Res. 168, 433–443 (1976)Google Scholar
  35. Potter, I.C.: The life cycles and ecology of Australian lampreys of the genus Mordacia. J. Zool. (Lond.) 161, 487–511 (1970)Google Scholar
  36. Potter, I.C.: The ecology of larval and metamorphosing lampreys. Can. J. Fish. Aquat. Sci. 37, 1641–1657 (1980)Google Scholar
  37. Potter, I.C. and F.W.H. Beamish: The freshwater biology of adult anadromous sea lampreys Petromyzon marinus. J. Zool. (Lond.) 181, 113–130 (1977)Google Scholar
  38. Potter, I.C. and R.J. Huggins: Observations on the morphology, behaviour and salinity tolerances of downstream migrating river lampreys (L. fluviatilis). J. Zool. (Lond.) 169, 365–379 (1973)Google Scholar
  39. Potter, I.C., G.M. Wright and J.H. Youson: Metamorphosis in the anadromous sea lamprey, Petromyzon marinus (L.). Can. J. Zool. 56, 561–570 (1978)Google Scholar
  40. Purvis, H.A.: Variations in growth, age at transformation and sex ratio of sea lampreys re-established in chemically treated tributaries of the upper Great Lakes. Can. J. Fish. Aquat. 37, 1827–1834 (1980)Google Scholar
  41. Read, L.J.: A study of ammonia and urea production and excretion in the freshwater adapted form of the Pacific lamprey, Entosphenus tridentatus. Comp. Biochem. Physiol. 26(2), 455–466 (1968)Google Scholar
  42. Richards, J.E.: The fresh water biology of the anadromous Pacific lamprey, Lampetra tridentata. 99 pp. M.Sc. thesis, University of Guelph, Guelph, Ontario, Canada 1980Google Scholar
  43. Robertson, J.D.: Osmotic and ionic regulation in cyclostomes. pp 169–193; In: M. Florkin and B.T. Scheer (eds.), Chemical zoology, Vol. VIII. Primitive deuterostomians, cyclostomata, fishes. New York: Academic Press 1974Google Scholar
  44. Schroll, F.: Zur Ernaehrungsbiologie der steirischen Ammocoeten Lampetra planeri (Bloch) und Eudontomyzon danfordi (Regan). Int. Rev. Ges. Hydrobiol. 44(3), 395–428 (1959)Google Scholar
  45. Weissenberg, R.: Beitraege zue Kenntnis der Biologie und Morphologie der Neunaugen. I. Vorderdarm und Mundbewaffnung bei Lampetra fluviatilis und planeri. Z. Mikrosk. Anat. Forsch. 5, 153–184 (1926)Google Scholar
  46. Wikgren, B.J.P.: Osmotic regulation in some aquatic animals with special reference to the influence of temperature. Acta Zool. (Stockh.) 71, 16–37 (1953)Google Scholar
  47. Youson, J.H. and I.C. Potter: A description of the stages in the metamorphosis of the anadromous sea lampreys, Petromyzon marinus (L.). Can. J. Zool. 57, 1808–1817 (1979)Google Scholar
  48. Youson, J.H. and K.L. Connelly: Development of longitudinal folds in the interstine of the anadromous sea lamprey, Petromarinus (L.), during metamorphosis. Can. J. Zool. 56, 2364–2371 (1978)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. E. Richards
    • 1
  • F. W. H. Beamish
    • 1
  1. 1.Department of ZoologyUniversity of GuelphGuelphCanada

Personalised recommendations