Advertisement

Marine Biology

, Volume 63, Issue 1, pp 13–21 | Cite as

Une approche vers l'estimation de la production potentielle du phytoplancton par analyse des cinétiques d'induction de fluorescence

  • J. Neveux
  • H. Jupin
Article

Abstract

In vivo chlorophyll fluorescence is particularly interesting ot ecologists because of various concepts (biomass, productivity, physiological state) associated with it. Using a modified spectrophotofluorometer, we have studied the kinetics of fluorescence in unialgal cultures and in a natural population of marine phytoplankton. Our apparatus did not achieve satisfactory results with cell suspensions having a chlorophyll concentration less than 10 μg l-1. We have also tested a method for estimating kinetics of diluted cultures and marine phytoplankton using cells collected on glass-fibre filters. For unialgal cultures in the exponential growth phase, the method proved satisfactory, and results obtained from both cell suspensions and filters were in good agreement. However, for aged cultures (principally diatoms) and natural marine phytoplankton the method proved unsuitable. The kinetics of fluorescence induction vary according to taxonomic position of the cells, light intensity of the measuring excitation beam and productiveness of the culture medium. The importance of the kinetics of fluorescence induction for characterization of phytoplankton activity is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Littérature citée

  1. Blasco, D.: Estudio de las variaciones de la relacion fluorescencia in vivo/chlorofila a, y su aplicacion en oceanografia. Influencia de la limitacion de diferentes nutrientes, efecto del dia y noche y dependencia de la especie estudiada. Investigación pesq. 37, 533–555 (1973)Google Scholar
  2. Blasco, D. and R. N. Dexter: Spectrophotometric and fluorescence determination. In: Phytoplankton growth dynamics, chemostat methodology and chemical analyses-technical series 1. Spec. Rep. Dep. Oceanogr. Univ. Wash. 52, 102–108 (1972)Google Scholar
  3. Cullen, J. J. and E. H. Renger. Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton populations. Mar. Biol. 53, 13–20 (1979)Google Scholar
  4. Droop, M. R.: Requirement for thiamine among some marine and supra-littoral protista. J. mar. biol. Ass. U.K. 37, 323–329 (1958)Google Scholar
  5. Etienne, A. L.: New results on the properties of photosystem II centers blocked by 3-(3, 4-dichorophenyl)-1, 1-dimethylurea in their different photoactive states. Biochim. biophys. Acta 333, 320–330 (1974)Google Scholar
  6. French, C. S. and H. S. Huang: The shape of the red absorption band of chlorophyll in live cells. Yb. Carnegie Instn Wash. 56, 266–268 (1957)Google Scholar
  7. Govindjee and G. Papageorgiou: Chlorophyll fluorescence and photosynthesis: fluorescence transients. In: Photophysiology, Vol. VI. pp 1–46. Ed. by A. C. Giese. New York: Academic Press 1971Google Scholar
  8. Gross, F.: Notes on the culture of some marine plankton organisms. J. mar. biol. Ass. U K. 21, 753–768 (1937)Google Scholar
  9. Guillard, R.R.L. and J. H. Ryther: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Denotula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962)Google Scholar
  10. Halldal, P.: Pigment formation and growth in blue green algae in crossed gradients of light intensity and temperature. Physiologia Pl. 11, 401–420 (1958)Google Scholar
  11. Herbland, A.: The soluble fluorescence in the open sea: distribution and ecological significance in the Equatorial Atlantic Ocean. J. exp. mar. Biol. Ecol. 32, 275–284 (1978)Google Scholar
  12. Joliot, P.: Kinetic of photosystem II in photosynthesis. Photochem. Photobiol. 8, 451–463 (1968)Google Scholar
  13. Kiefer, D. A.: Fluorescence properties of natural phytoplankton populations. Mar. Biol. 22, 263–269 (1973a)Google Scholar
  14. Kiefer, D. A.: Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Mar. Biol. 23, 39–46 (1973b)Google Scholar
  15. Lavorel, J.: Indications d'ordre spectroscopique sur l'hétérogénéité de la chlorophylle in vivo. In: La photosynthèse, pp 161–176. Ed. by M. R. Wurmser. Paris: Centre National de la Recherche Scientifique (C.N.R.S.) 1963Google Scholar
  16. Loftus, M. E. and H. H. Seliger: Some limitations of the in vivo fluorescence technique. Chesapeake Sci. 16, 79–92 (1975)Google Scholar
  17. Loftus, M. E., S. V. Subba Rao and H. H. Seliger: Growth and dissipation of phytoplankton in Chesapeake Bay. I. Response to a large pulse of rainfall. Chesapeake Sci. 13, 282–299 (1972)Google Scholar
  18. Lorenzen, C. J.: A method for continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. 13, 223–227 (1966)Google Scholar
  19. Malkin, S. and G. Michaeli: Fluorescence induction studies in isolated chloroplasts. IV. The inhibition of electron transfer from primary to secondary carries of PS II at low temperature and by DCMU. In: Proceedings of the 2nd International Congress on Photosynthesis, pp 149–167. Ed. by G. Forti, M. Avron and A. Melandri. The Hague: Dr. W. Junk 1971Google Scholar
  20. Roy, S. and L. Legendre: DCMU-enhanced fluorescence as an index of photosynthetic activity in phytoplankton. Mar. Biol. 55, 93–101 (1979)Google Scholar
  21. Samuelsson, G. and G. Oquist: A method for studying photosynthetic capacities of unicellular algae based on in vivo chlorophyll fluorescence. Physiologia Pl. 40, 315–319 (1977)Google Scholar
  22. Samuelsson, G., G. Oquist and P. Halldal: The variable fluorescence as a measure of photosynthetic capacity in algae. Mitt. int. Verein. theor. angew. Limnol. 21, 207–215 (1978)Google Scholar
  23. Slovacek, R. E. and T. Bannister: The effects of carbon dioxide concentration on oxygen evolution and fluorescence transients in synchronous cultures of Chlorella pyrenoidosa. Biochim. biophys. Acta 292, 729–740 (1973)Google Scholar
  24. Slovacek, R. E. and P. J. Hannan: In vivo fluorescence determinations of phytoplankton chlorophyll a. Limnol. Oceanogr. 22, 919–925 (1977)Google Scholar
  25. Tsvylev, O. P. and V. N. Tkachenko: On a possibility of the photochemiluminescent evaluation of the production ability of phytoplankton. [In Russ.]. Okeanologia, Mosk. 17, 883–889 (1977)Google Scholar
  26. Tunzi, M. G., M. Y. Chu and R. C. Bain Jr.: In vivo fluorescence, extracted fluorescence and chlorophyll concentrations in algal mass measurements. Wat. Res. 8, 623–636 (1974)Google Scholar
  27. Yentsch, C. S. and D. W. Menzel: A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10, 221–231 (1963)Google Scholar
  28. Yentsch, C. S. and C. M. Yentsch: Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra. J. mar. Res. 37, 471–483 (1979)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. Neveux
    • 1
  • H. Jupin
    • 2
  1. 1.Laboratoire AragoBanyuls-sur-MerFrance
  2. 2.Laboratoire de Biologie VégétaleCentre Universitaire de PerpignanPerpignanFrance

Personalised recommendations