Advertisement

Marine Biology

, Volume 63, Issue 1, pp 1–11 | Cite as

The annual cycle of protozooplankton in the Kiel Bight

  • V. Smetacek
Article

Abstract

Protozooplankton (heterotrophic dinoflagellates and ciliates) composition and biomass was studied in a 20-m water column in the Kiel Bight on 44 occasions between January 1973 and April 1974. Both groups attained comparable biomass maxima during spring and autumn (0.3 to 0.7 g C m-2 in the 20-m water column) and biomass levels were much lower in summer and lowest in winter. The spring protozooplankton maximum coincided with that of phytoplankton and during the rest of the year, protozooplankton stocks did not appear to be food limited as phytoplankton stocks were large throughout; many protozoans with ingested microplankton cells were observed, indicating that their potential food supply is not restricted to nanoplankton. Non-loricate organisms dominated biomass of the ciliates and tintinnids were of little importance. Tintinnids predominated in plankton samples concentrated by 20 μm gauze indicating that most non-loricate ciliates, irrespective of size, were not retained. When phytoplankton sotcks were large (>3 g C m-2) but those of metazooplankton small, as in spring and autumn, protozooplankton were the major herbivores with biomass levels comparable to those attained in summer by metazooplankton (≈ 0.5 g C m-2). A highly significant negative correlation was found between protozooplankton and metazooplankton during the plankton growth season. Predation by the latter is thus an important factor regulating size of the protozooplankton population, although other factors also appear to be in operation. Loss rates of the pelagic system through sedimentation are highest in spring and autumn when protozooplankton dominate the grazing community and loss rates are much lower in summer when metazooplankton are the dominant herbivores. Apparently, the impact of protozooplankton grazing on the pelagic system is quite different to that of the metazooplankton.

Keywords

Biomass Phytoplankton Loss Rate Dinoflagellate Plankton Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beers, J. R. and G. L. Stewart: Numerical abundance and estimated biomass of microzooplankton. Bull. Scripps Inst. Oceanogr. 17, 67–87 (1970)Google Scholar
  2. Berk, S. G., D. C. Brownlee, D. R. Heinle, H. J. Kling and R. R. Colwell: Ciliates as a food source for marine planktonic copepods. Microb. Ecol. 4, 27–40 (1977)Google Scholar
  3. Bock, K. J.: Protozoa. Zooplankton. Cons. Perm. Int. p. l'Explor. de la Mer 110, 1–4 (1967)Google Scholar
  4. Bodungen, B. von: Der Jahresgang der Nährsalze und der Primärproduktion des Planktons in der Kieler Bucht unter Berücksichtigung der Hydrographie. 116 pp. Ph.D. Thesis, Kiel Univ. 1975Google Scholar
  5. Bodungen, B. von., K. von Bröckel, V. Smetacek and B. Zeitzschel. Ecological studies on the plankton in the Kiel Bight. I. Phytoplankton. Merentutkimuslait. Julk. Havsforskningsinst. Skr. No. 239, 179–186 (1975)Google Scholar
  6. Bröckel, K. von: An approach to quantify the energy flow through the pelagic part of the shallow water ecosystem off Boknis Eck (Eckernförde Bay). Kieler Meeresforsch. Sonderheft Nr. 4, 233–243 (1978)Google Scholar
  7. Bursa, A.: The annual oceanographic cycle at Igloolik in the Canadian Arctic. J. Fish. Res. Bd Can. 18, 563–615 (1961a)Google Scholar
  8. Bursa, A.: Phytoplankton of the Calanus expeditions in Hudson Bay, 1953 and 1954. J. Fish. Res. Bd Can. 18, 51–83 (1961b)Google Scholar
  9. Conover, R. J. and P. Mayzaud: Respiration and nitrogen excretion of neritic zooplankton in relation to potential food supply, In: Proc. 10th Eur. Symp. Mar. Biol., Ostende, Sept. 17–23. Vol. 2, 151–163, Universa Press, Wetteren (1976)Google Scholar
  10. Drebes, G.: Marines Phytoplankton, 186pp. Stuttgart: Georg Thieme Verlag 1974Google Scholar
  11. Elbrächter, M.: Untersuchungen über die Populationsdynamik und Ernährungsbiologie von Dinoflagellaten im Freiland und im Labor. 91 pp. Ph.D. Thesis, Kiel Univ. 1971Google Scholar
  12. Gold, K.: Cultivation of marine ciliates (Tintinnida) and heterotrophic flagellates. Helgoländer wiss. Meeresunters. 20, 264–271 (1970)Google Scholar
  13. Heinbokel, J. F.: Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47, 177–189 (1978)Google Scholar
  14. Heinbokel, J. F. and J. R. Beers: Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52, 23–32 (1979)Google Scholar
  15. Hempel, G.: An interdisciplinary marine project at the University of Kiel ‘Sonderforschungsbereich 95’. Merentutkimuslait. Julk./Havsforskningsinst. Skr. No. 239, 162–166 (1975)Google Scholar
  16. Hillebrandt, M.: Untersuchungen über die qualitative und quantitative Zusammensetzung des Zooplanktons in der Kieler Bucht während der Jahre 1966–1968. 138 pp. Ph.D. Thesis, Kiel Univ. 1972Google Scholar
  17. Hobro, R., U. Larsson and F. Wulff: Dynamics of a phytoplankton spring bloom in a coastal area of the Northern Baltic. Prace Mor. Inst. Ryb. (In press)Google Scholar
  18. Johannes, R. E.: Influence of marine protozoa in nutrient regeneration. Limnol. Oceanogr. 10, 434–442 (1965)Google Scholar
  19. Kahl, A.: Protozoa, I: Ciliata. In: F. Dahl (ed.) Die Tierwelt Deutschlands, 886 pp. Jena: Verlag Gustav Fischer, 1935Google Scholar
  20. Krey, J.: Beobachtungen über den Gehalt an Mikrobiomasse und Detritus in der Kieler Bucht 1958–1960. Kieler Meeresforsch. 17, 163–175 (1961)Google Scholar
  21. Krey, J. and B. Zeitzschel: Longterm observations of oxygen and chlorophyll a in Kiel Bight. 12 pp. ICES, CM 1971, L: 11 (Plankton committee) (1971)Google Scholar
  22. Kraneis, W.: Untersuchungen über den Bestand und die Artenzusammensetzung des Mikrozooplanktons bei Boknis Eck (Kieler Bucht). 52 pp. Diplomarbeit, Kiel Univ. 1974Google Scholar
  23. Kudo, R. R.: Protozoology, 1174 pp. Illinois: C. C. Thomas, 1966Google Scholar
  24. Lenz, J.: Untersuchung zum Nahrungsgefüge im Pelagial der Kieler Bucht. Habilitationsschrift, Kiel Univ. 144 pp. 1974Google Scholar
  25. Lohmann, H.: Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters. Abt. Kiel, N.F. 10, 131–370 (1908)Google Scholar
  26. Lohmann, H.: Die Bevölkerung des Ozeans mit Plankton. Arch. Biontol. 4, 1–617 (1920)Google Scholar
  27. Mackinnon, D. L. and R. S. J. Hawes: An introduction to the study of protozoa, 506 pp. Oxford: Oxford Univ. Press, 1961Google Scholar
  28. Margalef, R.: The food web in the pelagic environment. Helgoländer wiss. Meeresunters. 15, 548–559 (1967a)Google Scholar
  29. Margalef, R.: Some concepts relevant to the organization of plankton. Oceanogr. mar. biol. Ann. Rev. 5, 257–289 (1967b)Google Scholar
  30. Margalef, R.: Cihados planktónicos de la región de afloramiento del NW de Africa, segun datos de la campana ‘Atlor II’. Res. Exp. Cient. B/O Cornide 4, 171–173 (1975)Google Scholar
  31. Martens, P.: Über die Qualität und Quantität der Sekundär-und Tertiärproduzenten in einem marinen Flachwasseröko-system der westlichen Ostsee. 111 pp. Ph.D. Thesis, Kiel Univ. 1975Google Scholar
  32. Pollehne, F.: Verteilung von Zooplankton Populationen in abgeschlossenen Wasserkörpern in der Kieler Bucht. 71 pp. Diplomarbeit, Kiel Univ. 1977Google Scholar
  33. Schiller, J.: Dinoflagellatae. In: L. Rabenhorst (ed.) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. New York, London: Johnson Reprint Corp. 1933Google Scholar
  34. Schnack, S.: Untersuchungen zur Nahrungsbiologie der Copepoden (Crustacea) in der Kieler Bucht. 141 pp. Ph.D. Thesis, Kiel Univ. 1975Google Scholar
  35. Schnack, S.: Seasonal change of zooplankton in Kiel Bay. III. Calanoid Copepods. Kieler Meeresforsch. Sonderheft 4, 201–209 (1978)Google Scholar
  36. Sieburth, J. M., V. Smetacek, and J. Lenz: Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 1256–1263 (1978)Google Scholar
  37. Smayda, T. R.: The growth of Skeletonema costatum during a winter-spring bloom in Narragansett Bay, Rhode Island. Nor. Jour. Bot. 20, 219–247 (1973)Google Scholar
  38. Smetacek, V.: Die Sukzession des Phytoplanktons in der westlichen Kieler Bucht. 151 pp. Ph.D. Thesis, Kiel Univ. 1975Google Scholar
  39. Smetacek, V.: Zooplankton standing stock, copepod faecal pellets and particulate detritus in Kiel Bight. Estuar. mar. cstl. Sci. 11, 477–490 (1980a)Google Scholar
  40. Smetacek, V.: Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia, Suppl. 1: 65–76 (1980b)Google Scholar
  41. Smetacek, V. and P. Hendrikson: Composition of particulate organic matter in Kiel Bight in relation to phytoplankton succession. Oceanol. Acta 2, 287–298 (1979)Google Scholar
  42. Smetacek, V., B. von Bodungen, B. Knoppers, H. Neubert, F. Pollehne and B. Zeitzschel: Shipboard experiments on the effect of vertical mixing on natural plankton populations in the Central Baltic Sea. Ophelia, Suppl. 1: 77–98 (1980)Google Scholar
  43. Spittler, P.: Feeding experiments with tintinnids. Oikos suppl 15, 128–132 (1973)Google Scholar
  44. Strathmann, R. R.: Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12, 411–418 (1967)Google Scholar
  45. Takahashi, M. and K. D. Hoskins: Winter condition of marine plankton populations in Saanich Inlet. B. C., Canada. II. Micro-zooplankton, J. exp. mar. Biol. Ecol. 32, 27–37 (1978)Google Scholar
  46. Utermöhl, H.: Zur Vervollkommnung der quantitativen Phytoplankton methodik. Mitt. int. Verein. theor. angew. Limnol. 9, 1–38 (1958)Google Scholar
  47. Zaika, V. E.: Specific production of aquatic invertebrates. 154 pp. New York: Wiley, 1973Google Scholar
  48. Zeitzschel, B.: Die Bedeutung der Tintinnen als Glied der Nahrungskette. Helgoländer wiss. Meeresunters. 15, 598–601 (1967)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • V. Smetacek
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKiel 1Germany (FRG)

Personalised recommendations