Marine Biology

, Volume 64, Issue 3, pp 243–250 | Cite as

Mélange vertical et capacité photosynthétique du phytoplancton estuarien (estuaire du Saint-Laurent)

  • S. Demers
  • L. Legendre


Time series of chlorophyll a, photosynthetic capacity and many physical parameters were sampled hourly for 167 h in August, 1975, at an anchor station located in the Middle Estuary of the St. Lawrence River, Canada. Sampling was carried out during the transition from neap tides to spring tides. The long-and short-term variations in chlorophyll a are coupled with the advection of water masses which depends on tidal currents. Vertical mixing also influences the chlorophyll a concentration of the cells, since it modifies the physiological state of the phytoplankton. Furthermore, circadian periodicities were observed in the photosynthetic capacity, suggesting that the phytoplankton of this area have a homogeneous light history due to strong vertical mixing. Under these conditions, the photosynthetic capacity is adapted to the mean light intensity in the mixed layer. The semimonthly (Mf) variations of the mean light intensity in the mixed layer depend on the Mf variations in the vertical mixing, whereas in the short-term, the variations in mean light intensity in the mixed layer are circadian.


Time Series Chlorophyll Phytoplankton Light Intensity Advection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Littérature citée

  1. Anderson, T. W.: The statistical analysis of time series, 704 pp. New York: John Wiley & Sons 1971Google Scholar
  2. d' Anglejan, B. F. and R. G. Ingram: Time-depth variations in tidal flux of suspended matter in the St. Lawrence Estuary. Estuar. cstl mar. Sci. 4, 401–416 (1976)CrossRefGoogle Scholar
  3. d' Anglejan, B. F. and E. C. Smith: Distribution, transport and composition of suspended matter in the St. Lawrence Estuary. Can. J. Earth Sciences 10, 1380–1396 (1973)CrossRefGoogle Scholar
  4. Bendat, J. S. and A. G. Piersol: Random data: analysis and measurement procedures, 407 pp. New York: John Wiley & Sons 1971Google Scholar
  5. Blackford, B. L.: On the generation of internal waves by tidal flow over a sill — a possible non-linear mechanism. J. mar. Res. 36, 529–549 (1978)Google Scholar
  6. Bousfield, E. L., G. Filteau, M. O'Neil and P. Gentes: Population dynamics of zooplankton in the middle St. Lawrence Estuary. In: Estuarine research, Vol. 1. pp 325–351. Ed. by L. E. Cronin. New York: Academic Press 1975Google Scholar
  7. Brunel, P.: Les grandes divisions du Saint-Laurent: 3ème commentaire. Revue Geogr. Montréal 24, 291–294 (1970)Google Scholar
  8. Defant, A.: Physical oceanography, II, 598 pp. New York: Pergamon Press 1961Google Scholar
  9. Deguise, J. C.: High-frequency internal waves in the St. Lawrence Estuary, 93 pp. M. Sc. thesis, McGill University 1977Google Scholar
  10. Demers, S., P. E. Lafleur, L. Legendre and C. L. Trump: Shortterm covariability of chlorophyll and temperature in the St. Lawrence Estuary. J. Fish. Res. Bd Can. 36, 568–573 (1979)CrossRefGoogle Scholar
  11. Demers, S. et L. Legendre: Effets des marées sur la variation circadienne de la capacité photosynthétique du phytoplancton de l'estuaire du Saint-Laurent. J. exp. mar. Biol. Ecol. 39, 87–99 (1979)CrossRefGoogle Scholar
  12. Dionne, J. C.: Vers une définition plus adéquate de l'estuaire du Saint-Laurent. Z. Geomorph. 7, 36–44 (1963)Google Scholar
  13. Doty, M. S. and M. Oguri: The carbon-fourteen technique for determining primary plankton productivity. Pubbl. Staz. zool. Napoli 31 (Suppl.), 70–94 (1959)Google Scholar
  14. Falkowski, P. G.: Light-shade adaptation in marine phytoplankton. In: Primary production in the sea, pp 99–199. Ed. by P. G. Falkowski, New York: Plenum-Press (1980)CrossRefGoogle Scholar
  15. Forrester, W. D.: Internal tides in the St. Lawrence Estuary. J. mar. Res. 32, 55–66 (1974)Google Scholar
  16. Fortier, L. et L. Legendre: Le contrôle de la variabilité à court terme du phytoplancton estuarien: stabilité verticale et profondeur critique. J. Fish. Res. Bd Can. 36, 1325–1335 (1979)CrossRefGoogle Scholar
  17. Fortier, L., L. Legedre, A. Cardinal et C. L. Trump: Variabilité à court terme du phytoplancton de l'estuaire du Saint-Laurent. Mar. Biol. 46, 349–354 (1978)CrossRefGoogle Scholar
  18. Fréchette, M. and L. Legendre: Phytoplankton photosynthetic response to light in an internal tide dominated environment. Estuaries, Solomons, Md (sous presse)Google Scholar
  19. Harris, G. P.: Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Can. J. Fish. aquat. Sciences 37, 877–900 (1980)CrossRefGoogle Scholar
  20. Harris G. P., G. D. Haffner and B. B. Piccinin: Physical variability and phytoplankton communities: II. Primary productivity by phytoplankton in a physically variable environment. Arch. Hydrobiol. 88, 393–425 (1980)Google Scholar
  21. Harris, G. P. and B. B. Piccinin: Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 80, 405–457 (1977)Google Scholar
  22. Jenkins, G. M. and D. G. Watts: Spectral analysis and its applications, 525 pp. San Francisco: Holden-Day 1968Google Scholar
  23. Kamykowski, D.: Possible interactions between phytoplankton and semi-diurnal internal tides. J. mar. Res. 32, 67–89 (1974)Google Scholar
  24. Kamykowski, D.: Possible interactions between plankton and semi-diurnal internal tides. II. Deep thermoclines and trophic effects. J. mar. Res. 34, 499–509 (1976)Google Scholar
  25. Kamykowski, D.: The growth response of a model Gymnodinium splendens in stationary and wavy water columns. Mar. Biol. 50, 289–303 (1979)CrossRefGoogle Scholar
  26. Lafleur, P. E., L. Legendre et A. Cardinal: Dynamique d'une population estuarienne de diatomées planctoniques: effet de l'alternance des marées de morte-eau et de vive-eau. Oceanol. Acta 2, 307–315 (1979)Google Scholar
  27. Laval-Martin, D. L., D. J. Shuch and L. N. Edmunds Jr.: Cell cycle-related and endogenously controlled circadian photosynthetic rhythms in Euglena. Pl. Physiol., Lancaster 63, 495–502 (1979)CrossRefGoogle Scholar
  28. Legendre, L.: Hydrodynamic control of marine phytoplankton production: the paradox of stability. In: Ecohydrodynamics, pp 191–207. Ed. by J. C. J. Nihoul. Amsterdam: Elsevier 1981Google Scholar
  29. Muir, L. R.: Internal tides in the Middle Estuary of the St. Lawrence. Naturaliste can. 106, 27–36 (1979)Google Scholar
  30. Owens, T. G., D. M. Riper and P. G. Falkowski: Studies of delta-aminolevulinic acid dehydrase from Skeletonema costatum, a marine plankton diatom. Pl. Physiol., Lancaster 62, 516–521 (1978)CrossRefGoogle Scholar
  31. Partenscky, H. W. et L. Louchard: Etude sur la variation cyclique de la salinité moyenne dans l'estuaire du Saint-Laurent, 147 pp. Université Montréal: Ecole de polytechnique, Division d'Hydraulique 1967. (Rapp. soum. Cons. natn. Rech. Canada)Google Scholar
  32. Prézelin, B. B., B. W. Meeson and B. M. Sweeney: Characterization of photosynthetic rhythms in marine dinoflagellates. I. Pigmentation, photosynthetic capacity and respiration. Pl. Physiol., Lancaster 60, 384–387 (1977)CrossRefGoogle Scholar
  33. Prézelin, B. B. and B. M. Sweeney: Characterization of photosynthetic rhythms in marine dinoflagellates. II. Photosynthesis-irradiance curves and in vivo chlorophyll a fluorescence. Pl. Physiol., Lancaster 60, 388–392 (1977)CrossRefGoogle Scholar
  34. Pugh, P. R.: An evaluation of liquid scintillation counting techniques for use in aquatic primary production studies. Limnol. Oceanogr. 18, 310–319 (1973)CrossRefGoogle Scholar
  35. Riper, D. M., T. G. Owens and P. G. Falkowski: Chlorophyll turnover in Skeletonema costatum, a marine plankton diatom. Pl. Physiol., Lancaster 64, 49–54 (1979)CrossRefGoogle Scholar
  36. Savidge, G.: Photosynthetic characteristics of marine phytoplankton from contrasting physical environments. Mar. Biol. 53, 1–12 (1979)CrossRefGoogle Scholar
  37. Sinclair, M.: Summer phytoplankton variability in the lower St. Lawrence estuary. J. Fish. Res. Bd Can. 35, 1171–1185 (1978)CrossRefGoogle Scholar
  38. Sournia, A.: Circadian periodicities in natural populations of marine phytoplankton. Adv. mar. Biol. 12, 325–389 (1974)CrossRefGoogle Scholar
  39. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can. 167, 1–310 (1972)Google Scholar
  40. Takahashi, M., D. L. Siebert and W. H. Thomas: Occasional blooms of phytoplankton during summer in Saanich Inlet, B. C., Canada. Deep-Sea Res. 24, 775–780 (1977)CrossRefGoogle Scholar
  41. Therriault, J. C.: Variations des propriétés physico-chimiques et biologiques d'une zone de mélange de l'estuaire du Saint-Laurent, 154 pp. Thèse de Maîtrise, Université Laval, Québec, Québec 1973Google Scholar
  42. Walther, W. G. and L. N. Edmunds, Jr.: Studies on the control of the rhythm of photosynthetic capacity in synchronized cultures of Euglena gracilis (Z). Pl. Physiol., Lancaster 51, 250–258 (1973)CrossRefGoogle Scholar
  43. Turner, J. S.: Buoyancy effects in fluids, 367 pp. New York: Cambridge University Press 1973CrossRefGoogle Scholar
  44. Webb, K. L. and C. F. D'Elia: Nutrient and oxygen redistribution during a spring neap tidal cycle in a temperature estuary. Science, N.Y. 207, 983–985 (1980)CrossRefGoogle Scholar
  45. Winter, D. F., K. Banse and G. C. Anderson: The dynamics of photoplankton blooms in Puget Sound, a fjord in the northwestern United States. Mar. Biol. 29, 139–176 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • S. Demers
    • 1
  • L. Legendre
    • 1
  1. 1.GIROQ, Département de biologieUniversité LavalSte-FoyCanada

Personalised recommendations