Marine Biology

, Volume 64, Issue 3, pp 231–241 | Cite as

Survival and heterotrophic activities of Fraser River and Strait of Georgia bacterioplankton within the Fraser River plume

  • M. Valdés
  • L. J. Albright


Although the majority of the autochthonous heterotrophic bacterioplankton of the lower Fraser River appear to be killed when placed in Strait of Georgia marine water, their marine counterparts within Strait of Georgia surface water remain viable when treated with Fraser River water. However, within the plume water which naturally results when the freshwater of the Fraser River mixes with marine water of the Strait of Georgia, a stimulation in glucose heterotrophic activities occurs within the salinity range of approximately 3–18‰S. These increased bacterioplankton activities may be a consequence of a better nutrient environment within plume waters as compared to either parent water.


Glucose Surface Water River Water Autochthonous Marine Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Albrecht, R. M. and A. P. MacKenzie: Cultured and free-living cells., pp 110–116. In: M. A. Hayat (ed.), Principles and techniques of scanning electron microscopy: biological applications. Vol. 3. New York: Van Nostrand Reinhold Co. 1976Google Scholar
  2. Albright, L. J.: Heterotrophic bacterial dynamics in the lower Fraser River, it estuary and Georgia Strait, British Columbia, Canada. Mar. Biol. 39, 203–211 (1977)CrossRefGoogle Scholar
  3. Azam, F. and O. Holm-Hansen: Use of tritiated substrates in the study of heterotrophy in seawater. Mar. Biol. 23, 191–196 (1973)CrossRefGoogle Scholar
  4. Bowden, W. B.: Comparison of two direct count techniques for enumerating aquatic bacteria. Appl. env. Microbiol. 33, 1229–1232 (1977)Google Scholar
  5. Boyde, A. and R. A. D. Williams: Estimation of the volumes of bacterial cells by scanning electron microscopy. Archs. Oral Biol. 16, 259–267 (1971)CrossRefGoogle Scholar
  6. Churchland, L. M.: Fraser River estuary study. Microbial water quality, 1970–1977. Environment Canada, Vancouver. 144 pp. 1980Google Scholar
  7. Daley, R. J. and J. E. Hobbie: Direct counts of aquatic bacteria by a modified epi-fluorescent technique. Limnol. Oceanogr. 20, 875–881 (1975)CrossRefGoogle Scholar
  8. Doetsch, R. N. and T. M. Cook: Introduction to bacteria and their ecobiology. 371 pp. Baltimore: University Park Press 1973CrossRefGoogle Scholar
  9. Faust, M. A. and D. L. Correll: Autoradiographic study to detect metabolically active phytoplankton and bacteria in the Rhode River estuary. Mar. Biol. 41, 293–305 (1977)CrossRefGoogle Scholar
  10. Ferguson, R. L. and P. Rublee: Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21, 141–145 (1976)CrossRefGoogle Scholar
  11. Gocke, K.: Investigations on heterotrophic activity in the Central Baltic Sea. Mar. Biol. 40, 87–94 (1977)CrossRefGoogle Scholar
  12. Hall, K. J., F. A. Koch and I. Yesaki: Further investigations into water quality conditions in the lower Fraser River system. 104 pp. Tech. Rep. No. 4. Westwater Res. Centre, Univ. Brit. Col. Vancouver. (1974)Google Scholar
  13. Hayat, M. A.: Principles and techniques of scanning electron microscopy: biological applications., Vol. 3., New York: Van-Nostrand Reinhold Co. 1976Google Scholar
  14. Hayes, T. L. and J. B. Pawley: Very small biological specimens. pp 46–48. In: M. A. Hayat (ed.), Principles and techniques of scanning electron microscopy: biological applications., Vol. 3. New York: Van Nostrand Reinhold Co. 1976Google Scholar
  15. Hobbie, J. E., R. J. Daley and S. Hasper: Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl. env. Microbiol. 33, 1225–1228 (1977)Google Scholar
  16. Hoppe, H.-G.: Determination of properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography. Mar. Biol. 36, 291–302 (1976)CrossRefGoogle Scholar
  17. Lamanna, C., M. F. Mallete. Basic bacteriology. 1001 pp. Baltimore: The Williams and Wilkins Co. 1965Google Scholar
  18. Lamanna, C., M. F. Mallete and I. Zimmermann: Basic bacteriology: its biological and chemical background. 4th. Ed., pp 68. Baltimore: The Williams and Wilkins Co. 1973Google Scholar
  19. Lavoie, D. M.: Application of diffusion culture to ecological observations of marine microorganisms. 91 pp. M. S. Thesis., Univ. Rhode Island 1975Google Scholar
  20. Luria, S. W.: The bacterial protoplasm: composition and organization. pp 1–34. In: I. C. Gunsalus and R. Y. Stanier (eds), The bacteria: structure, Vol. I, New York: Academic Press Inc. 1960Google Scholar
  21. Palumbo, A. V. and R. L. Ferguson: Distribution of suspended bacteria in the Newport River estuary, North Carolina. Estuar. cstl mar. Sci. 7, 521–530 (1978)CrossRefGoogle Scholar
  22. Parsons, T. R., L. J. Albright and J. Parslow: Some comments on the suggested eutrophication of the Strait of Georgia by nutrients from the Fraser River. Can. J. Fish. Aquat. Sci. 37, 1043–1047 (1980)CrossRefGoogle Scholar
  23. Parsons, T. R. and R. J. LeBrasseur: The availability of food to different trophic levels in the marine food chain, pp 325–343. In: J. H. Steele (ed.) Marine food chains. Edinburgh: Oliver and Boyd 1970Google Scholar
  24. Parsons, T. R., R. J. LeBrasseur and W. E. Barraclough: Levels of production in the pelagic environment of the Strait of Georgia, British Columbia: a review. J. Fish. Res. Bd Can. 27, 1251–1264 (1970)CrossRefGoogle Scholar
  25. Parsons, T. R., K. Stephens and R. J. LeBrasseur: Production studies in the Strait of Georgia. Part I. Primary production under the Fraser River plume, February to May 1967. J. exp. mar. Biol. Ecol. 3, 27–38 (1969)CrossRefGoogle Scholar
  26. Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton and R. J. Britten: Studies of biosynthesis in E. coli. 521 pp. Carnegie Inst. Washington Publ. 607, 1957Google Scholar
  27. Rogers, A. W.: Techniques of autoradiography. 373 pp. Amsterdam, London, New York: Elsevier Publ. Co. 1973Google Scholar
  28. Seki, H. and O. D. Kennedy: Marine bacteria and other heterotrophs as food for zooplankton in the Strait of Georgia during the winter. J. Fish. Res. Bd Can. 26, 3165–3173 (1969)CrossRefGoogle Scholar
  29. Seki, H., K. V. Stephens and T. R. Parsons: The contribution of allochthonous bacteria and organic materials from a small river into a semi-enclosed sea. Arch. Hydrobiol. 66, 37–47 (1969)Google Scholar
  30. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. 310 pp. 2nd Ed. Fish. Res. Bd Can., Ottawa 1972Google Scholar
  31. Takahashi, A., K. Fujii and T. R. Parsons: Simulation study of phytoplankton photosynthesis and growth in the Fraser River estuary. Mar. Biol. 19, 102–116 (1973)CrossRefGoogle Scholar
  32. Watson, S. W.: Role of bacteria in an upwelling ecosystem. pp 139–154. In: R. Boje and M. Tomczak (eds.), Upwelling ecosystems. New York: Springer-Verlag 1978CrossRefGoogle Scholar
  33. Watson, S. W., T. J. Novitsky, H. L. Quinby and F. W. Valois: Determination of bacterial number and biomass in the marine environment. Appl. environ. Microbiol. 33, 940–946 (1977)PubMedPubMedCentralGoogle Scholar
  34. Watt, W. D.: Measuring the primary production rates of individual phytoplankton species in natural mixed populations. Deep-Sea Res. 18, 329–339 (1971)Google Scholar
  35. Weiland, R. T., T. H. Chrzanowski and L. H. Stevenson: Influence of freshwater intrusion on microbial biomass in salt-marsh creeks. Estuaries 2, 126–129 (1979)CrossRefGoogle Scholar
  36. Wiebe, W. J. and L. R. Pomeroy: Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. pp 325–352. Mem. Ist. Ital. Idrobiol., 29 Suppl. 1972Google Scholar
  37. Wright, R. T. and J. E. Hobbie: Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47, 447–453 (1966)CrossRefGoogle Scholar
  38. Wright, R. T.: Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl. environ. Microbiol. 36, 297–305 (1978)PubMedPubMedCentralGoogle Scholar
  39. Zimmermann, R.: Entwicklung und Anwendung von fluoreszenzund rasterelektronenmikroskopischen Methoden zur Ermittlung der Bakterienmenge in Wasserproben. 187 pp. Thesis, Univ. Kiel 1975Google Scholar
  40. Zimmermann, R.: Estimation of bacterial numbers and biomass by epifluorescence microscopy and scanning electron microscopy. pp 103–120. In: G. Rheinheimer (ed.) Microbial ecology of a brackish water environment. Berlin: Springer-Verlag 1977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • M. Valdés
    • 1
  • L. J. Albright
    • 1
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations