Skip to main content
Log in

Bacterial symbiosis in Northeast Pacific Vestimentifera: a TEM study

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A number of new vestimentiferan species occur at northeast Pacific hydrothermal vent sites. The trophosome and bacterial symbionts of three species, collected from the Juan de Fuca and Explorer Ridges between 1984 and 1986, were studied by transmission electron microscopy (TEM). As in Riftia pachyptila, trophosome tissue is organised into lobules each having an axial blood vessel, and intracellular bacterial symbionts are contained in membrane vacuoles. The bacteria have many cytoplasmic inclusions including tubular membrane systems, glycogen-like particles and poly-β-hydroxybutyrate (PHB) or sulfur bodies. Glycogen production may be quantitatively important to both the symbionts and the host. Glycogen-like granules appear to first accumulate in the bacterial cells and then be released into the bacteriocyte cytoplasm as bacteria are degraded. Although various stages of bacterial growth and degradation are observed, data are insufficient to verify any across-lobule progression of these processes. Morphological comparison of the symbionts reveals that similar symbionts are found in different vestimentiferan species and that one to two bacterial types exist within single individuals. Two possible models of trophosome function and nutrient exchange are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Bosch, C., Grassé, P. P. (1984a). Cycle partiel des bactéries chimioautotrophes symbiotiques et leurs rapport avec les bactériocytes chez Riftia pachyptila Jones (Pogonophora Vestimentifère). I. Le trophosome et les bactériocytes. C. r. hedb. Séanc. Acad. Sci., Paris 9:371–376

    Google Scholar 

  • Bosch, C., Grassé, P. P. (1984b). Cycle partiel des bactéries chimiautotrophes symbiotiques et leurs rapport avec les bactériocytes chez Riftia pachyptila Jones (Pogonophora Vestimentifère). II. L'évolution des bactéries symbiotiques et des bactériocytes. C.R. hebd. Séanc. Acad. Sci., Paris, t. 299, Sér. III, No. 9:413–419

    Google Scholar 

  • Burgh, M. E. de (1986). Evidence for a physiological gradient in the vestimentiferan trophosome: size-frequency analysis of bacterial populations and trophosome chemistry. Can. J. Zool. 64:1095–1103

    Google Scholar 

  • Canadian-American Seamount Expedition (1985). Hydrothermal vents on an axial seamount of the Juan de Fuca spreading zone. Nature, Lond. 313:212–214

    Google Scholar 

  • Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, Lond. 302:58–61

    Google Scholar 

  • Cavanaugh, C. M. (1985). Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. biol. Soc. Wash. 6:373–388

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts. Science, N.Y. 213:340–341

    Google Scholar 

  • Childress, J. J., Arp, A. J., Fisher, C. R. Jr. (1984). Metabolic and blood characteristics of the hydrothermal vent tube-worm Riftia pachyptila. Mar. Biol. 83:109–124

    Google Scholar 

  • Childress, J. J., Felbeck, H., Somero, G. N. (1987). Symbiosis in the deep sea. Sci. Am. 255(5):114–120

    Google Scholar 

  • Distel, D. L., Lane, D. J., Olsen, G. J., Giovannoni, F. J., Pace, N.R., Stahl, D. A., Felbeck, H. (1988). Sulfur oxidising bacterial symbionts: analysis of phylogeny, specificity and origins by 16S ribosomal RNA sequences. J. Bacteriol. 170:2506–2510

    Google Scholar 

  • Fauré-Fremiet, E., Rouiller, C. (1958). Étude au microscope électronique d'une bactérie sulfureuse, Thiovulum majus Hinze. Exp. Cell Res. 14:29–46

    Google Scholar 

  • Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213:336–338

    Google Scholar 

  • Felbeck, H. (1985). CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila Jones. Physiol. Zoöl. 58:272–281

    Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. (1983b). Biochemical interactions between molluscs and their algal and bacterial symbionts. In: The Mollusca, Vol. 2: Environmental biochemistry and physiology. Wilbur, K. M. (ed.) Academic Press, New York, p 331–358

    Google Scholar 

  • Felbeck, H., Liebezeit, G., Dawson, R., Giere, O. (1983a). CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75:187–191

    Google Scholar 

  • Fiala-Médioni, A. (1984). Mise en évidence par microscopie électronique à transmission de l'abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes. Cr. hebd. Séanc. Acad. Sci., Paris 17:487–492

    Google Scholar 

  • Fiala-Médioni, A., Métivier, C., Herry, A., Le Pennec, M. (1986). Ultrastructure of the gill of the hydrothermal-vent mytilid Bathymodiolus sp. Mar. Biol. 92:65–72

    Google Scholar 

  • Fisher, C. R., Childress, J. J. (1984). Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (Phylum Pogonophora). Mar. Biol. Lett. 5:171–183

    Google Scholar 

  • Fisher, C. R., Childress, J. J., Oremland, R. S., Bidigare, R. R. (1987). The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96:59–71

    Google Scholar 

  • Fisher, C. R., Hand, S. C. (1984). Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biol. Bull. mar. biol. Lab., Woods Hole 167:445–459

    Google Scholar 

  • Giere, O. (1981). The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria. Mar. Ecol. Prog. Ser. 5:353–357

    Google Scholar 

  • Ivanov, A. V. (1963). Pogonophora. Academic Press, London

    Google Scholar 

  • Jannasch, H. W., Taylor, C. D. (1984). Deep-sea microbiology. A. Rev. Microbiol. 38:487–514

    Google Scholar 

  • Jensen, T. E., Sicko, L. M. (1973). The fine structure of Chloroloea fritschii cultured in sodium acetate enriched medium. Cytologia 38:381–391

    Google Scholar 

  • Jones, M. L. (1981). Riftia pachyptila Jones: Observations on the vestimentiferan worm from the Galápagos Rift. Science, N.Y. 213:333–336

    Google Scholar 

  • Jones, M. L. (1985). On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull. Biol. Soc. Wash. 6:117–158

    Google Scholar 

  • Land, J. van der, Nørrevang, A. (1977). Structure and relationships of Lamellibrachia (Annelida, Vestimentifera). K. danske Vidensk. Selsk. Skr. 21:1–102

    Google Scholar 

  • Luft, J. H. (1961). Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9:409–414

    Google Scholar 

  • Mañé-Garzón, F., Montero, R. (1985). Sobre una nueva forma de verme tubicola Lamellibrachia victori n. sp. (Vestimentifera) Proposicion de un nuevo phylum: Mesoneurophora. Rev. Biol. (Uruguay) 8:1–28

    Google Scholar 

  • MERGE (Multidisciplinary Endeavor Ridge Geo-Expedition) (1984). Regional setting and local character of a hydrothermal field-sulfide deposit on the Endeavor segment of the Juan de Fuca Ridge. Eos 65(45):1111

    Google Scholar 

  • Nelson, D. C., Waterbury, J. B., Jannasch, H. W. (1984). DNA base composition and genome size of the prokaryote symbiont in Riftia pachyptila (Pogonophora). FEBS Lett. 24:267–271

    Google Scholar 

  • Perry, M. M. (1967). Identification of glycogen in thin sections of amphibian embryos. J. Cell Sci. 2:257–264

    Google Scholar 

  • Shively, J. M. (1974). Inclusion bodies of prokaryotes. A. Rev. Microbiol. 28:167–187

    Google Scholar 

  • Southward, A. J., Southward, E. C. (1970). Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Sarsia 45:69–95

    Google Scholar 

  • Southward, A. J., Southward, E. C. (1980). On the value of dissolved organic matter as food for Siboglinum ekmani and other small pogonophores. J. mar. biol. Ass. U.K. 60:1005–1034

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Rau, G. H., Felbeck, H., Flugel, H. (1981). Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, Lond. 293:616–620

    Google Scholar 

  • Southward, E. C. (1973). The distribution of glycogen in the tissues of Siboglinum atlanticum (Pogonophora). J. mar. biol. Ass. U.K. 53:665–671

    Google Scholar 

  • Southward, E. C. (1982). Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U.K. 62:889–906

    Google Scholar 

  • Southward, E. C. (1988). Development of the gut and segmentation of newly-settled stages of Ridgeia (Vestimentifera): Implications for relationship between vestimentifera and pogonophora. J. mar. biol. Ass. U.K. 68:465–487

    Google Scholar 

  • Stahl, D. A., Lane, D. J., Olsen, G. J., Pace, N. R. (1984). Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science, N.Y. 224:409–411

    Google Scholar 

  • Tunnicliffe, V., Botros, M., Burgh, M. E. de, Dinet, A., Johnson, H. P., Juniper, S. K., McDuff, R. E. (1986). Hydrothermal vents of Explorer Ridge, northeast Pacific. Deep-Sea Res. 33:401–412

    Google Scholar 

  • US Geological Survey Juan de Fuca Study Group (1986). Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca ridge: Preliminary observations from the submersible Alvin. Geology 14:823–827

    Google Scholar 

  • Vetter, R. (1985). Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88:33–42

    Google Scholar 

  • Webb, M. (1969). Lamellibrachia barhami, gen. nov. sp. nov. (Pogonophora), from the northeast Pacific. Bull. mar. Sci. 19:18–47

    Google Scholar 

  • Wilkinson, C. R. (1978). Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar. Biol. 49:177–185

    Google Scholar 

  • Zwaan, A. de (1977). Anaerobic energy metabolism in bivalve molluscs. Oceanogr. mar. Biol. A. Rev. 15:103–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Doyle, Halifax

Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

deBurgh, M.E., Juniper, S.K. & Singla, C.L. Bacterial symbiosis in Northeast Pacific Vestimentifera: a TEM study. Mar. Biol. 101, 97–105 (1989). https://doi.org/10.1007/BF00393482

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393482

Keywords

Navigation