Marine Biology

, Volume 85, Issue 3, pp 279–284 | Cite as

Reproductive isolation with little genetic divergence between Urticina (=Tealia) felina and U. eques (Anthozoa: Actiniaria)

  • A. M. Solé-Cava
  • J. P. Thorpe
  • J. G. Kaye


There has long been doubt as to whether there are one or two British species of the sea anemone genus Urticina. In the present study, populations of both putative species, which occur sympatrically in the Isle of Man, have been compared by electrophoresis of isozymes and nematocyst analysis. The analysis of fourteen isozyme loci exhibited a high genetic identity between the two taxa (I=0.907), but four loci showed significant differences in gene frequencies; thus indicating reproductive isolation. The populations displayed highly significant differences in the sizes of the various nematocyst types. The individual analysis of data for each type of nematocyst revealed that the basitrics from the actinopharynx and from the tentacles contribute most to the observed difference. Consequently, U. felina (L.) and U. eques (Gosse) are assumed to be valid species, as suggested by Manuel (1981). The mean heterozygosities for each species (0.410 and 0.436, respectively) are the highest reported for cnidarians.


Genetic Divergence Electrophoresis Gene Frequency Reproductive Isolation Individual Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Avise, J. C.: Systematic value of electrophoretic data. Syst. Zool. 23, 465–481 (1974)Google Scholar
  2. Avise, J. C. and F. J. Ayala: Genetic differentiation in speciose versus depauperate phylads: evidence from the California minnows. Evolution, Lawrence, Kansas 30, 46–58 (1976)Google Scholar
  3. Avala, F. J.: Genetic differentiation during the speciation process. Evolutionary Biol. 8, 1–78 (1975)Google Scholar
  4. Ayala, F. J.: Enzymes as taxonomic characters. In: Protein polymorphism: adaptative and taxonomic significance, pp 3–26. Ed. by G. S. Oxford and D. Rollinson. London: Academic Press 1983Google Scholar
  5. Ayre, D. J.: The effects of asexual reproduction and inter-genotypic aggression on the genotypic structure of populations of the sea anemone Actinia tenebrosa. Oecologia 57, 158–165 (1983)Google Scholar
  6. Black, R. and M. S. Johnson: Asexual viviparity and population genetics of Actinia tenebrosa. Mar. Biol. 53, 27–31 (1979)Google Scholar
  7. Brewer, G. J.: An introduction to isozyme techniques, 186 pp. New York: Academic Press 1970Google Scholar
  8. Bryce, D. and A. Hobart: The biology and identification of the larvae of the Chironomidae (Diptera). Entomologist's Gaz. 23, 175–217 (1972)Google Scholar
  9. Bucklin, A. and D. Hedgecock: Biochemical genetic evidence for a third species of Metridium (Coelenterata: Actiniaria). Mar. Biol. 66, 1–7 (1982)Google Scholar
  10. Carlgren, O.: Actiniaria, Part 1. Dan. Ingolf Exped. 5, 1–241 (1921)Google Scholar
  11. Carlgren, O.: A survey of the Phytodactiaria, Corallimorpharia and Actiniaria. K. svenska. VetenskAkad. Handl. 1, 1–121 (1949)Google Scholar
  12. Carter, M. A. and J. P. Thorpe: Reproductive, genetic and ecological evidence that Actinia equina var mesembryanthemum and var. fragacea are not conspecific. J. mar. biol. Ass. U.K. 61, 79–83 (1981)Google Scholar
  13. Cheesman, D. F., W. L. Lee and P. F. Zagalsky: Carotenoproteins in invertebrates. Biol. Rev. 42, 132–160 (1967)Google Scholar
  14. Chia, F.-S.: Sea anemone reproduction: patterns and adaptative radiation. In: Coelenterate ecology and behaviour, pp 261–270. Ed. by G. O. Mackie. New York: Plenum Press 1976Google Scholar
  15. Chia, F.-S. and J. G. Spaulding: Development and juvenile growth of the sea anemone Tealia crassicornis. Biol. Bull. mar. biol. Lab., Woods Hole 142, 206–218 (1972)Google Scholar
  16. Elmhirst, R. and J. S. Sharpe: On the colours of the sea anemone Tealia crassicornis. Ann. Mag. nat. Hist. 11, 615–621 (1923)Google Scholar
  17. Ferguson, A.: Biochemical systematics and evolution, 194 pp. Glasgow: Blackie 1980Google Scholar
  18. Gottlieb, L. D.: Gel electrophoresis: a new approach to the study of evolution. BioSci 21, 939–944 (1971)Google Scholar
  19. Gottlieb, L. D.: Biochemical consequences of speciation in plants. In: Molecular evolution, pp 123–140. Ed. by F. J. Ayala. Sunderland, Massachusetts: Sihauer Associates 1976Google Scholar
  20. Hand, C.: The sea anemones of central California, Part 2. The endomyarian and mesomyarian anemones. Wasmann J. Biol. 13, 37–99 (1955)Google Scholar
  21. Harris, H. and D. A. Hopkinson: Handbook of enzyme electrophoresis in human genetics, Amsterdam: North Holland 1978Google Scholar
  22. Haylor, G. S., J. P. Thorpe and M. A. Carter. Genetical and ecological differentiation between sympatric colour morphs of the common intertidal sea anemone Actinia equina. Mar. Ecol. Prog. Ser. 16, 281–290 (1984)Google Scholar
  23. Hillis, D. M.: Misuse and modification of Nei's genetic distance. Syst. Zool. 33, 238–240 (1984)Google Scholar
  24. Hoffman, R. J.: Genetics and asexual reproduction of the sea anemone Metridium senile. Biol. Bull. mar. biol. Lab., Woods Hole 151, 478–488 (1976)Google Scholar
  25. Lewontin, R. C.: The genetic basis of evolutionary change, 346 pp. New York: Columbia University Press 1974Google Scholar
  26. Lewontin, R. C.: Detecting population differences in quantitative characters as opposed to gene frequencies. Am. Nat. 123, 115–124 (1984)Google Scholar
  27. Manuel, R. L.: The Anthozoa of the British Isles—a colour guide, 60 pp. Manchester: Underwater Conservation Society 1980Google Scholar
  28. Manuel, R. L.: British Anthozoa, 241 pp. London: Academic Press 1981Google Scholar
  29. Manwell, C. and C. M. A. Baker: Molecular biology and the origin of species. 394 pp. Seattle: University of Washington Press 1970Google Scholar
  30. McCommas, S. A. and L. J. Lester: Electrophoretic evaluation of the taxonomic status of two species of sea anemone. Biochem. Syst. Ecol. 8, 289–292 (1980)Google Scholar
  31. Nei, M.: Genetic distance between population. Am. Nat. 106, 283–292 (1972)Google Scholar
  32. Orr, J., J. P. Thorpe and M. A. Carter: Biochemical genetic confirmation of the asexual reproduction of brooded offspring in the sea anemone Actinia equina. Mar. Ecol. Prog. Ser. 7, 227–229 (1982)Google Scholar
  33. Ottaway, J. R. and G. C. Kirby: Genetic relationships between brooding and brooded Actinia tenebrosa. Nature, Lond. 255, 221–223 (1975)Google Scholar
  34. Poulik, M. D.: Starch gel electrophoresis in a discontinuous system of buffers. Nature, Lond. 180, 1477–1479 (1957)Google Scholar
  35. Quicke, D. L. J. and R. C. Brace: Phenotypic and genotypic spacing within an aggregation of the sea anemone, Actinia equina. J. mar. biol. Ass. U.K. 63, 493–515 (1983)Google Scholar
  36. Shaw, P. R. and R. Prasad: Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem. Genet. 4, 297–320 (1970)Google Scholar
  37. Shick, J. M., R. J. Hoffmann and A. N. Lamb: Asexual reproduction, population structure, and genotype-environment interactions in sea anemones. Am. Zool. 19, 699–713 (1979)Google Scholar
  38. Shick, J. M. and A. N. Lamb: Asexual reproduction and genetic population structure in the colonizing sea anemone Haliplanella luciae. Biol. Bull. mar. biol. Lab., Woods Hole 153, 604–617 (1977)Google Scholar
  39. Sokal, R. R. and F. J. Rohlf: Biometry. The principles and practice of statistics in biological research, 2nd ed. 859 pp. San Francisco: Freeman & Co. 1981Google Scholar
  40. Stephenson, T. A.: The British sea anemones, Vol 2. 426 pp. London: Ray Society 1935Google Scholar
  41. Thoday, J. M. and J. B. Gibson: Isolation by disruptive selection. Nature, Lond. 193, 1164–1166 (1962)Google Scholar
  42. Thorpe, J. P.: Enzyme variation and taxonomy: the estimation of sampling errors in measurements of interspecific genetic similarity. Biol. J. Linn. Soc. 11, 369–386 (1979)Google Scholar
  43. Thorpe, J. P.: The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. A. Rev. Ecol. Syst. 13, 139–168 (1982)Google Scholar
  44. Thorpe, J. P.: Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. In: Protein polymorphism: adaptative and taxonomic significance, pp 131–152. Ed. by G. S. Oxford and D. Rollinson. London: Academic Press 1983Google Scholar
  45. Thorpe, J. P., J. A. Beardmore and J. S. Ryland: Genetic evidence for cryptic speciation in the marine bryozoan Alcyonidium gelatinosum. Mar. Biol. 49, 27–32 (1978)Google Scholar
  46. Turner, B. R.: Genetic divergence of Death Valley pupfish species: biochemical versus morphological evidence. Evolution, Lawrence, Kansas 28, 281–294 (1974)Google Scholar
  47. Wahlund, S.: Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11, 65–106 (1928)Google Scholar
  48. Ward, R. D. and J. A. Beardmore: Protein variation in the plaice (Pleuronectes platessa). Genet. Res. 30, 45–62 (1977)Google Scholar
  49. West, H. H.: Pigmentation in the sea anemone Corynactis californica. Comp. Biochem. Physiol. 64B, 195–200 (1979)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. M. Solé-Cava
    • 1
  • J. P. Thorpe
    • 1
  • J. G. Kaye
    • 1
  1. 1.Department of Marine BiologyUniversity of Liverpool, The Marine Biological StationPort ErinIsle of Man, UK

Personalised recommendations