Skip to main content
Log in

Energy metabolism in the foot of the marine gastropod Nassa mutabilis during environmental and functional anaerobiosis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study concerns the effects of oxygen deprivation due to incubation in oxygen free sea water (environmental anoxia) or exercise (functional anoxia) and of exposure to air on the mode of energy production in the foot of the whelk Nassa mutabilis. Additionally, energy metabolism of the foot muscle was investigated during exercise after different anoxia periods and during the subsequent recovery period. During environmental anoxia, phosphoarginine, glycogen and aspartate are broken down as substrates and alanine and succinate are formed as products. There was no production of D-lactate or octopine. The energy charge value fell after 24-h anoxia. Exposure to air resulted in only small changes in phosphoarginine and alanine levels, suggesting that oxygen uptake was impaired in the first phase of air exposure but that, later, aerial respiration kept pace with the energy demand. Exercise caused a dramatic decrease of phosphoarginine concentration, coupled with glycolytic ATP production via octopine formation. In the recovery period (after exercise), the level of phosphoarginine was rapidly restored. An anaerobic component was evident during recovery as shown by the accumulation of D-lactate. Thus, both terminal dehydrogenases, octopine- and lactate dehydrogenase, are active in the muscle, but under different physiological conditions. Octopine formation also took place when the whelks were subjected to exercise after 4 or 24 h of anoxia. In this case, glycolysis provided between 70 and 90% of the energy required since the phosphagen store had already been depleted during the anoxic period. When the work load was increased (greater number of leaps), it became evident that the action of arginine kinase and octopine dehydrogenase are not closely linked. First there was an increase of arginine and then later a condensation of arginine with pyruvate to form octopine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Baldwin, J., A. K. Lee and W. R. England: The functions of octopine dehydrogenase and D-lactate dehydrogenase in the pedal retraotor muscle of the dog whelk Nassarius coronatus (Gastropoda: Nassariidae). Mar. Biol. 62, 235–238 (1981)

    Google Scholar 

  • Bauer, V.: Notizen aus einem biologischen Laboratorium am Mittelmeer. Int. Rev. Hydrob. 6, 31–37 (1913)

    Google Scholar 

  • Bergmeyer, H. U., E. Bernt, H. Möllering and G. Pfleiderer: L-Aspartat and L-Asparagin. In: Methoden der enzymatischen Analyse, Vol 2, pp 1741–1745. Ed. by H. U. Bergmeyer. 3rd ed. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Brand, T. von, H. D. Baernstein and B. Mehlman: Studies on the anaerobic metabolism and the aerobic carbohydrate consumption of some fresh water snails. Biol. Bull. mar. biol. Lab., Woods Hole 98, 266–276 (1950)

    Google Scholar 

  • Carlsson, K. H. and G. Gäde: Anaerobic metabolism of the horseshoe crab, Limulus polyphemus: tissue-specific isoenzymes of D-specific lactate dehydrogenase and lactate metabolism. In: Exogenous and endogenous influences on metabolic and neural control, Vol. 2, p 128. Ed. by A. D. F. Addink and N. Spronk. Oxford: Pergamon Press 1982

    Google Scholar 

  • Carlsson, K. H. and G. Gäde: L-Alanin als wichtiges Endprodukt bei biotopbedingter Anaerobiose von Limulus polyphemus. Verh. dtsch. Zool. Ges. Bonn, p 274 (1983)

  • Chih, C. P. and W. R. Ellington: Energy metabolism during contractile activity and environmental hypoxia in the phasic adductor muscle of the bay scallop Argopecten irradians concentricus. Physiol. Zool. 56, 623–631 (1983)

    Google Scholar 

  • Ellington, W. R.: Energy metabolism during hypoxia in the isolated perfused ventricle of the Whelk, Busycon contrarium Conrad. J. comp. Physiol. 142, 457–464 (1981)

    Google Scholar 

  • Ellington, W. R.: Metabolism at the pyruvate branch point in the radula retractor muscle of the whelk, Busycon contrarium. Can. J. Zool. 60, 2973–2977 (1982)

    Google Scholar 

  • Gäde, G.: Biological role of octopine formation in marine molluscs. Mar. Biol. Lett. 1, 121–135 (1980a)

    Google Scholar 

  • Gäde, G.: The energy metabolism of the foot muscle of the jumping cockle, Cardium tuberculatum: sustained anoxia versus muscular activity. J. comp. Physiol. 137, 177–182 (1980b)

    Google Scholar 

  • Gäde, G.: Energy production during swimming in the adductor muscle of the bivalve Lima hians: comparison with the data from other bivalve mollusks. Physiol. Zool. 54, 400–406 (1981)

    Google Scholar 

  • Gäde, G.: Energy metabolism of arthropods and mollusks during environmental and functional anaerobiosis. J. exp. Zool. 228, 415–429 (1983)

    Google Scholar 

  • Gäde, G. and M. Grieshaber: A rapid and specific enzymatic method for the estimation of L-arginine. Anal. Biochem. 66, 393–399 (1975)

    Google Scholar 

  • Gäde, G. and E.J.H. Head: A rapid method for the purification of octopine dehydrogenase for the determination of cell metabolites. Experientia 35, 304–305 (1979)

    Google Scholar 

  • Gäde, G., E. Weeda and P. A. Gabbott: Changes in the level of octopine during the escape responses of the scallop. Pecten maximus (L.). J. comp. Physiol. 124, 121–127 (1978)

    Google Scholar 

  • Gäde, G., H. Wilps, J. H. F. M. Kluytmans and A. de Zwaan: Glycogen degradation and end products of anaerobic metabolism in the fresh water bivalve Anodonta cygnea. J. comp. Physiol. 104, 79–85 (1975)

    Google Scholar 

  • Gawehn, K. and H. U. Bergmeyer: D-Lactat. In: Methoden der enzymatischen Analyse, Vol. 2, pp 1538–1541. Ed. by H. U. Bergmeyer. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Grieshaber, M.: Breakdown and formation of high-energy phosphates and octopine in the adductor muscle of the scallop, Chlamys opercularis (L.), during escape swimming and recovery. J. comp. Physiol. 126, 269–276 (1978)

    Google Scholar 

  • Grieshaber, M., E. Kronig and R. Koormann: A photometric estimation of phospho-L-arginine, arginine and octopine using homogenous octopine dehydrogenase isoenzyme 2 from the squid, Loligo vulgaris. Hoppe Seylers Z. Physiol. Chem. 359, 133–136 (1978)

    Google Scholar 

  • Hoffmann, H.: Über den Fluchtreflex bei Nassa. Zool. Anz. 4 (Suppl.), Verh. Dtsch. Zool. Ges. (Marburg), 112–118 (1929)

    Google Scholar 

  • Jaworeck, D., W. Gruber and H. U. Bergmeyer: Adenosin-5′-diphosphat und Adenosin-5′-monophosphat. In: Methoden der enzymatischen Analyse, Vol. 2, pp 2179–2181. Ed. by H. U. Bergmeyer, 3rd ed. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Kluytmans, J. H., P. R. Veenhof and A. de Zwaan: Anaerobic production of volatile fatty acids in the sea mussel Mytilus edulis L. J. comp. Physiol. 104, 71–78 (1975)

    Google Scholar 

  • Koormann, R. and M. Grieshaber: Investigations on the energy metabolism and on octopine formation of the common whelk, Buccinum undatum L., during escape and recovery. Comp. Biochem. Physiol. 65 B, 543–547 (1980)

    Google Scholar 

  • Kushins, L. J. and C. P. Mangum: Responses to low oxygen conditions in two species of the mud snail Nassarius. Comp. Biochem. Physiol. 39 A, 421–435 (1971)

    Google Scholar 

  • Lamprecht, W. and I. Trautschold: ATP; Bestimmung mit Hexokinase und Glucose-6-phosphat-Dehydrogenase. In: Methoden der enzymatischen Analyse, Vol. 2, pp 2151–2159. Ed. by H. U. Bergmeyer, 3rd ed. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Livingstone, D. R.: Energy production in the muscles of different kinds of molluscs. In: Exogenous and endogenous influences on metabolic and neural control, Vol. 1, pp 257–274. Ed. by A. D. F. Addink and N. Spronk. Oxford: Pergamon Press 1982

    Google Scholar 

  • Meinardus, G. and G. Gäde: Zur physiologischen Bedeutung der drei terminalen Dehydrogenasen der Glykolyse bei der Herzmuschel Cardium tuberculatum. Verh. dtsch. Zool. Ges. Bonn p 307 (1983)

  • Weber, H.: Ein Umdreh- und ein Fluchtreflex bei Nassa mutabilis. Zool. Anz. 60, 261–269 (1924)

    Google Scholar 

  • Weber, H.: Über die Umdrehreflexe einiger Prosobranchier des Golfes von Neapel. Z. vergl. Physiol. 3, 389–474 (1926)

    Google Scholar 

  • Wieser, W.: The initial stage of anaerobic metabolism in the snail, Helix pomatia. FEBS Lett. 95, 375–378 (1978)

    Google Scholar 

  • Wieser, W.: Metabolic end products in three species of marine gastropods. J. mar. biol. Assoc. U.K. 80, 175–180 (1980)

    Google Scholar 

  • Williamson, D. H.: L-Alanin. Bestimmung mit Alanin-Dehydrogenase. In: Methoden der enzymatischen Analyse, Vol. 2, pp 1724–1727. Ed. by H. U. Bergmeyer, 3rd ed. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Williamson, J. R.: Succinat. In: Methoden der enzymatischen Analyse, Vol. 2, pp 1661–1666. Ed. by H. U. Bergmeyer, 3rd ed. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Zwaan, A. de: Carbohydrate metabolism in bivalves. In: The mollusca, Vol. 1, Metabolic biochemistry and molecular biomechanics, pp 137–175. Ed. by P. W. Hochachka. New York: Academic Press 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gäde, G., Carlsson, K.H. & Meinardus, G. Energy metabolism in the foot of the marine gastropod Nassa mutabilis during environmental and functional anaerobiosis. Marine Biology 80, 49–56 (1984). https://doi.org/10.1007/BF00393127

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393127

Keywords

Navigation