Marine Biology

, Volume 86, Issue 1, pp 101–107 | Cite as

Benthic community response to experimental additions of the polychaete Nereis virens

  • J. A. Commito
  • P. B. Shrader


Previous field manipulations with the predatory polychaete Nereis virens have indicated the existence of a 3-level interactive system within the infauna in Maine, USA (N. virens — Corophium volutator — other infauna). The purpose of this investigation, carried out in 1980, was to test the hypothesis that the addition of N. virens to a community where the intermediate predator/disturber C. volutator is absent should cause infaunal densities to decrease. Experimental results did not support this hypothesis. In N. virens addition treatments there was a sharp increase in the density of the infauna. Three taxa which accounted for 95% of the individuals in controls (tubificid oligochaetes, Streblospio benedicti, Capitella capitata) were also most abundant in addition treatments. Their rank orders and relative proportions were the same in addition treatments and controls; there was no evidence of a differential response to the addition of N. virens. Mechanisms which explain the rise in infaunal desnity include: reduction of an intermediate predator by N. virens (in this case Nephtys incisa); nutrient enrichment from N. virens fecal material; and sediment modification caused by N. virens burrowing and surface activities. The explanation most consistent with the data is the intermediate predator hypothesis. The results of this and other experiments suggest the importance of complex trophic interactions within the infauna.


Addition Treatment Polychaete Benthic Community Interactive System Nutrient Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ambrose, W. G., Jr.: Influence of residents on the development of a marine soft-bottom community. J. mar. Res. 42, 633–654 (1984a)Google Scholar
  2. Ambrose, W. G., Jr.: Influences of predatory polychaetes and epibenthic predators on the structure of a soft-bottom community in a Maine estuary. J. exp. mar. Biol. Ecol. 81, 115–145 (1984b)Google Scholar
  3. Bass, N. R. and A. E. Brafield: The life-cycle of the polychaete Nereis virens. J. mar. biol. Ass. U.K. 52, 701–726 (1972)Google Scholar
  4. Bell, S. S.: Meiofauna-macrofauna interactions in a high salt marsh habitat. Ecol. Monogr. 50, 487–505 (1980)Google Scholar
  5. Bell, S. S. and B. C. Coull: Field evidence that shrimp predation regulates meiofauna. Oecologia 35, 141–148 (1978)Google Scholar
  6. Brafield, A. E. and G. Chapman: Gametogenesis and breeding in a natural population of Nereis virens. J. mar. biol. Ass. U.K. 47, 619–627 (1967)Google Scholar
  7. Brenchley, G. A.: Disturbance and community structure: an experimental approach. J. mar. Res. 39, 767–790 (1981)Google Scholar
  8. Clark, R. B.: Observations on the food of Nephtys. Limnol. Oceanogr. 7, 380–385 (1962)Google Scholar
  9. Commito, J. A.: Predation, competition, life-history strategies, and the regulation of estuarine soft-bottom community structure, 201 pp. Ph.D. thesis. Durham, N.C.: Duke University 1976Google Scholar
  10. Commito, J. A.: Importance of predation by infaunal polychaetes in controlling the structure of a soft-bottom community in Maine, USA. Mar. Biol. 68, 77–81 (1982a)Google Scholar
  11. Commito, J. A.: Effects of Lunatia heros predation on the population dynamics of Mya arenaria and Macoma balthica in Maine, USA. Mar. Biol. 69, 187–193 (1982b)Google Scholar
  12. Commito, J. A. and W. G. Ambrose, Jr.: Predatory infauna and trophic complexity in soft-bottom communities. Proc. Nineteenth Eur. mar. biol. Symp. Cambridge: Cambridge University Press (In press)Google Scholar
  13. Connell, J. H. and R. T. Slatyer: Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977)Google Scholar
  14. Creaser, E. P. and D. A. Clifford: Life history studies of the sandworm, Nereis virens Sars, in the Sheepscot estuary, Maine. Fish. Bull. 80, 735–743 (1982)Google Scholar
  15. Dean, D.: Migration of the sandworm Neris virens during winter nights. Mar. Biol. 45, 165–173 (1978)Google Scholar
  16. Evans, S. M.: A study of fighting reactions in some nereid polychaetes. Anim. Behav. 21, 138–146 (1973)Google Scholar
  17. Fauchald, K. and P. A. Jumars: The diet of worms: a study of polychaete feeding guilds. Oceanogr. mar. biol. Rev. 17, 193–284 (1979)Google Scholar
  18. Feller, R. J., G. L. Taghon, E. D. Gallagher, G. E. Kenny and P. A. Jumars: Immunological methods for food web analysis in a soft-bottom benthic community. Mar. Biol. 54, 61–74 (1979)Google Scholar
  19. Fenchel, T. and L. H. Kofoed: Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). Oikos 27, 367–376 (1976)Google Scholar
  20. Gallagher, E. D., P. A. Jumars and D. D. Trueblood: Facilitation of soft-bottom benthic succession by tube builders. Ecology 64, 1200–1216 (1983)Google Scholar
  21. Haddon, P. J. and A. H. Hines: Effects of predation by Nereis succinea (Frey and Leuckart 1847) (Polychaeta: Nereidae) on estuarine infauna. (In review)Google Scholar
  22. Highsmith, R. C.: Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: adult sand dollar beds. Ecology 63, 329–337 (1982)Google Scholar
  23. Holland, A. F., N. K. Mountford, M. H. Hiegel, K. R. Kaumeyer and J. A. Mihursky: Influence of predation on infaunal abundance in Upper Chesapeake Bay, USA. Mar. Biol. 57, 221–235 (1980)Google Scholar
  24. Hunter, J. and D. R. Arthur: Some aspects of the ecology of Peloscolex benedeni Udeken (Oligochaeta: Tubificidae) in the Thames estuary. Est. cstl mar. Sci. 6, 197–208 (1978)Google Scholar
  25. Kneib, R. T. and A. E. Stiven: Benthic invertebrate responses to size and density manipulations of the common mummichog, Fundulus heteroclitus, in an intertidal salt marsh. Ecology 63, 1518–1532 (1982)Google Scholar
  26. Levinton, J. S.: The ecology of deposit-feeding communities: Quisset Harbor, Massachusetts. In: Ecology of marine benthos, pp 191–228. Ed. by B. C. Coull. Columbia: University of South Carolina Press 1977Google Scholar
  27. Levinton, J. S. and G. R. Lopez: A model of renewable resources and limitation of deposit-feeding benthic populations. Oecologia 31, 177–190 (1977)Google Scholar
  28. Levinton, J. S., G. R. Lopez, H. H. Lassen and U. Rahn: Feedback and structure in deposit-feeding marine benthic communities. In: Biology of benthic organisms, pp 409–416. Ed. by B. F. Keegan, P. O. Ceidigh and P. J. S. Boaden. New York: Pergamon Press 1977Google Scholar
  29. Menge, J. L. and B. A. Menge: Role of resource allocation, aggression and spatial heterogeneity in coexistence of two competing starfish. Ecol. Monogr. 44, 189–209 (1974)Google Scholar
  30. Nelson, W. G.: An analysis of structural pattern in an eelgrass (Zoster marina L.) amphipod community. J. exp. mar. Biol. Ecol. 39, 231–261 (1979)Google Scholar
  31. Oliver, J. S., J. M. Oakden and P. N. Slattery: Phoxocephalid amphipod crustaceans as predators on larvae and juveniles in marine soft-bottom communities. Mar. Ecol. Prog. Ser. 7, 179–184 (1982)Google Scholar
  32. Paine, R. T.: Size-limited predation: an observational and experimental approach with the Mytilus-Pisaster interaction. Ecology 57, 858–873 (1976)Google Scholar
  33. Peterson, C. H.: Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons. Mar. Biol. 43, 343–359 (1977)Google Scholar
  34. Peterson, C. H. and S. V. Andre: An experimental analysis of interspecific competition among marine filter feeders in a softsediment environment. Ecology 61, 129–139 (1980)Google Scholar
  35. Reise, K.: Predation pressure and community structure of an intertidal soft-bottom fauna. In: Biology of benthic organisms, pp 513–520. Ed. by B. F. Keegan, P. O. Ceidigh and P. J. S. Boaden Oxford: Pergamon Press 1977aGoogle Scholar
  36. Reise, K.: Predator exclusion experiments in an intertidal mud flat. Helgoländer wiss. Meeresunters. 30, 263–271 (1977b)Google Scholar
  37. Reise, K.: Experiments on epibenthic predation in the Wadden Sea. Helgoländer wiss. Meeresunters. 31, 55–101 (1978)Google Scholar
  38. Reise, K.: Moderate predation on meiofauna by the macrobenthos of the Wadden Sea. Helgoländer wiss. Meeresunters. 32, 453–465 (1979)Google Scholar
  39. Reise, K.: Experimental removal of lugworms from marine sand affects small benthos. Mar. Biol. 74, 327–332 (1983a)Google Scholar
  40. Reise, K.: Biotic enrichment of intertidal sediments by experimental aggregates of the deposit-feeding bivalve Macoma balthica. Mar. Ecol. Prog. Ser. 12, 229–236 (1983b)Google Scholar
  41. Rhoads, D. C. and D. K. Young: The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. mar. Res. 28, 150–178 (1970)Google Scholar
  42. Roe, P.: Life history and predator—prey interactions of the nemertean Paranemertes peregrina Coe. Biol. Bull. mar. biol. Lab., Woods Hole 150, 80–106 (1976)Google Scholar
  43. Schneider, D.: Equalisation of prey numbers by migratory shorebirds. Nature, Lond. 271, 353–354 (1978)Google Scholar
  44. Segerstråle, S. G.: Investigations on Baltic populations of the bivalve Macoma baltica (L.). Part II. What are the reasons for the periodic failure of recruitment and the scarcity of Macoma in the deeper waters of the inner Baltic? Commentat. Biol. Soc. Sci. Fenn. 24, 1–26 (1962)Google Scholar
  45. Segerstråle, S. G.: Biotic factors affecting the vertical distribution and abundance of the bivalve, Macoma baltica (L.), in the Baltic Sea. Bot. Gothob. 3, 195–204 (1965)Google Scholar
  46. Segerstråle, S. G.: Results of bottom fauna sampling in certain locations in the Tuarminne area (inner Baltic), with special reference to the so-called Macoma-Pontoporeia theory. Commentat. Biol. Soc. Sci. Fenn. 66, 3–12 (1973)Google Scholar
  47. Snow, D. R. and J. R. Marsden: Life cycle, weight and possible age distribution in a population of Nereis virens (Sars) from New Brunswick. J. nat. Hist. 8, 513–527 (1974)Google Scholar
  48. Sokal, R. R. and F. J. Rohlf: Biometry, 776 pp. San Francisco: W. H. Freeman 1969Google Scholar
  49. Thistle, D.: Deep-sea harpacticoid copepod diversity maintenance: The role of polychaetes. Mar. Biol. 52, 371–376 (1979)Google Scholar
  50. Tsuchiya, M. and Y. Kurihara: Effect of the feeding behaviour of macrobenthos on changes in environmental conditions of intertidal flats. J. exp. mar. Biol Ecol. 44, 85–94 (1980)Google Scholar
  51. Virnstein, R. W.: The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58, 1199–1217 (1977)Google Scholar
  52. Virnstein, R. W.: Predation on estuarine infauna: response patterns of component species. Estuaries 2, 69–86 (1979)Google Scholar
  53. Wilson, W. H., Jr.: A laboratory investigation of the effect of a terebellid polychaete on the survivorship of nereid polychaete larvae. J. exp. mar. Biol. Ecol. 46, 73–80 (1980)Google Scholar
  54. Wilson, W. H., Jr.: Sediment-mediated interactions in a densely populated infaunal assemblage: the effects of the polychaete Abarenicola pacifica. J. mar. Res. 39, 735–748 (1981)Google Scholar
  55. Wiltse, W. I.: Effects of Polinices duplicatus (Gastropoda: Naticidae) on infaunal community structure at Barnstable Harbor, Massachusetts, USA. Mar. Biol. 56, 301–310 (1980)Google Scholar
  56. Witte, F. and P. A. W. J. de Wilde: On the ecological relation between Nereis diversicolor and juvenile Arenicola marina. Neth. J. Sea Res. 13, 394–405 (1979)Google Scholar
  57. Woodin, S. A.: Polychaete abundance patterns in a marine softsediment environment: the importance of biological interactions. Ecol. Monogr. 44, 171–187 (1974)Google Scholar
  58. Woodin, S. A.: Adult-larval interactions in dense infaunal assemblages: patterns of abundance. J. mar. Res. 34, 25–41 (1976)Google Scholar
  59. Woodin, S. A.: Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology 59, 274–284 (1978)Google Scholar
  60. Woodin, S. A.: Disturbance and community structure in a shallow water sand flat. Ecology 62, 1052–1066 (1981)Google Scholar
  61. Young, D. K., M. A. Buzas and M. V. Young: Species densities of macrobenthos associated with seagrass: a field experimental study of predation. J. mar. Res. 34, 577–592 (1976)Google Scholar
  62. Zar, J. H.: Biostatistical analysis, 620 pp Englewood Cliffs, New Jersey: Prentice-Hall 1974Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. A. Commito
    • 1
    • 2
  • P. B. Shrader
    • 3
  1. 1.Department of BiologyHood College, and M.A. BioproductsFrederickUSA
  2. 2.Department of Marine Zoology and Marine ChemistryUniversity of OsloN-Oslo 3Norway
  3. 3.Department of BiologyHood CollegeWalkersvilleUSA

Personalised recommendations