Advertisement

Marine Biology

, Volume 86, Issue 1, pp 75–84 | Cite as

Phosphorus exchange in marine microplankton communities near Hawaii

  • R. E. H. Smith
  • W. G. Harrison
  • L. Harris
Article

Abstract

Tracer exchange kinetics were consistent with the view that microplankton of waters near Hawaii produced and assimilated dissolved orthophosphate and dissolved compounds other than orthophosphate at roughly equal rates in experiments conducted in September, 1982. Using simple exchange models plus chemical measurements, we inferred that material other than orthophosphate could sometimes dominate the soluble molybdate-reactive pool (SRP), as is frequently the case in fresh waters. Where phosphorus exchange was most rapid, the tracer kinetics suggested that some fraction of the plankton community was disproportionately responsible for dissolved phophorus exchange. Comparisons against independent measurements of rapid phytoplankton turnover in these communities supported the conclusion that dissolved compounds other than orthophosphate were rapidly cycled and formed an important substrate for plankton growth.

Keywords

Orthophosphate Phosphorus Phytoplankton Fresh Water Independent Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Azam, F., T. Fenchel, J. G. field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad: The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983)Google Scholar
  2. Barsdate, R. J., R. T. Prentki and T. Fenchel: Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25, 239–251 (1974)Google Scholar
  3. Berman, M. and M. F. Weiss: SAAM Manual, 239 pp. U.S. Dept. Health, Education and Welfare Publication NIH-78-180, 1978Google Scholar
  4. Bienfang, P. K. and M. Takahashi: Ultraplankton growth rates in a subtropical ecosystem. Mar. Biol. 76, 213–218 (1983)Google Scholar
  5. Chamberlain, W. and J. Shapiro: On the biological significance of phosphate analysis: comparison of standard and new methods with a bioassay. Limnol. Oceanogr. 14, 921–927 (1969)Google Scholar
  6. Cuhel, R. L., H. W. Jannasch, C. D. Taylor and D. R. S. Lean: Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean. Limnol. Oceanogr. 28, 1–18 (1983)Google Scholar
  7. Curric, D. and J. Kalff: The relative importance of bacterioplankton versus phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29, 311–321 (1984)Google Scholar
  8. Draper, N. R. and H. Smith: Applied regression analysis, 407 pp. New York: John Wiley and Sons 1966Google Scholar
  9. Fitzwater, S. E., G. A. Knauer and J. H. Martin: Metal contamination and its effect on primary production measurements. Limnol. Oceanogr. 27, 544–551 (1982)Google Scholar
  10. Glibert, P. M., F. Lipschultz, J. J. McCarthy and M. A. Altabet: Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27, 639–650 (1982)Google Scholar
  11. Harrison, W. G.: Uptake and recycling of soluble reactive phosphorus by marine microplankton. Mar. Ecol. Prog. Ser. 10, 127–135 (1983)Google Scholar
  12. Harrison, W. G., F. Azam, E. H. Renger and R. W. Eppley: Some experiments on phosphate assimilation by coastal marine plankton. Mar. Biol. 40, 9–18 (1977)Google Scholar
  13. Johannes, R. E.: Phosphorus excretion as related to body size in marine animals: the significance of nannozooplankton in nutrient regeneration. Science, N.A. 146, 923–924 (1964)Google Scholar
  14. Johnson, D. L.: Simultaneous determination of arsenate and phosphate. Environ. Sci. Technol. 5, 411–414 (1971)Google Scholar
  15. Kuenzler, E. J.: Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol. 6, 7–13 (1970)Google Scholar
  16. Kuenzler, E. J., D. W. Stanley and J. P. Koenings: Nutrient kinetics of phytoplankton in the Pamlico River, North Carolina. Water Resources Research Unit report No. 139, 1–163 (1979)Google Scholar
  17. Kuenzler, E. J. and J. P. Perras: Phosphatases of marine algae. Biol. Bull. mar. biol. Lab., Woods Hole 128, 271–284 (1965)Google Scholar
  18. Laws, E. A.: Isotope dilution models and the mystery of the vanishing 15N. Limnol. Oceanogr. 29, 379–386 (1984)Google Scholar
  19. Laws, E. A., D. G. Readalje, L. W. Haas, P. K. Bienfang, R. W. Eppley, W. G. Harrison, D. M. Karl and J. Marra: High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29, 1161–1169 (1984)Google Scholar
  20. Lean, D. R. S.: Phosphorus dynamics in lake water. Science, N.Y. 179, 678–680 (1973)Google Scholar
  21. Lean, D. R. S. and E. White: Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Can J. Fish. aquat. Sci. 40, 147–155 (1983)Google Scholar
  22. Levine, S. N. and D. W. Schindler: Radiochemical analysis of orthophosphate concentrations and seasonal change in the flux of orthophosphate to the seston in two Canadian Shield lakes. Can. J. Fish. aquat. Sci. 37, 479–487 (1980)Google Scholar
  23. Nalewajko, C. and D. R. S. Lean: Phosphorus. In: The physiological ecology of phytoplankton, pp 191–233. Ed. by I. Morris. Oxford: Blackwell 1980Google Scholar
  24. Norman, J. C. and P. E. Sager: Modelling phosphorus transfer rates in lake water. J. theor. Biol. 71, 381–385 (1978)Google Scholar
  25. Paerl, H. W. and M. T. Downes: Biological availability of low vs high molecular weight reactive phosphorus. Can. J. Fish. aquat. Sci. 35, 1639–1643 (1978)Google Scholar
  26. Pages, J. and L. Lemasson: Essai de modelisation de l'assimilation de 32P par le phytoplankton. Oceanogr. Trop. 17, 145–154 (1982)Google Scholar
  27. Perry, M. J.: Phosphorus utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the Central North pacific. Limnol. Oceanogr. 21, 88–107 (1976)Google Scholar
  28. Peterson, B. J.: Aquatic primary productivity and the 14CO2 method: a history of the productivity problem. A. Rev. Ecol. Syst. 11, 369–385 (1980)Google Scholar
  29. Pomeroy, L. R., H. M. Mathews and H. S. Min: Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr. 8, 50–55 (1963)Google Scholar
  30. Rigler, F. H.: A dynamic view of the phosphorus cycle in lakes. In: Environmental phosphorus handbook, pp 539–572. Ed. by E. J. Griffiths, A. Beeton, J. M. Spence and D. T. Mitchell. New York: John Wiley and Sons 1973Google Scholar
  31. Ryther, J. H. and W. M. Dunstan: Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science, N.Y. 171, 1008–1013 (1971)Google Scholar
  32. Sheppard, C. W.: Basic principles of the tracer method, 282 pp. New York: John Wiley and Sons 1962Google Scholar
  33. Smith, D. F.: Quantitative analysis of the functional relationships existing between ecosystem components. I. Analysis of the linear intercompartment mass transfers. Oecologia 16, 97–106 (1974)Google Scholar
  34. Smith, R. E. H. and T. Platt: Carbon exchange and 14C tracer methods in a nitrogen-limited diatom, Thalassiosira pseudonana. Mar. Ecol. Prog. Ser. 16, 75–87 (1984)Google Scholar
  35. Solórzano, L. and J. H. Sharp: Determination of total dissolved phosphorus and particulate dissolved phosphorus in natural waters. Limnol. Oceanogr. 25, 754–758 (1980)Google Scholar
  36. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. J. Fish. Res. Bd Can. Bull. 167, 1–310 (1972)Google Scholar
  37. Taft, J. L. and J. J. McCarthy: Uptake and release of phosphorus by phytoplankton in the Chesapeake Bay estuary, U.S.A. Mar. Biol. 33, 21–32 (1975)Google Scholar
  38. Taylor, W. D. and D. R. S. Lean: Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. aquat. Sci. 38, 1316–1321 (1981)Google Scholar
  39. Watt, W. D. and F. R. Hayes: Tracer study of the phosphorus cycle in sea water. Limnol. Oceanogr. 8, 276–285 (1963)Google Scholar
  40. White, E., G. Payne, S. Pickmere and F. R. Pick: Factors influencing orthophosphate turnover times: a comparison of Canadia and New Zealand lakes. Can. J. Fish. aquat. Sci. 39, 469–474 (1982)Google Scholar
  41. Williams, P. J. LeB, K. R. Heinemann, J. Marra and D. A. Purdie: Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters. Nature, Lond. 305, 49–50 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. E. H. Smith
    • 1
  • W. G. Harrison
    • 1
  • L. Harris
    • 1
  1. 1.Marine Ecology LaboratoryBedford Institute of Oceanography, Fisheries and OceansDartmouthCanada

Personalised recommendations