Skip to main content
Log in

Phosphorus exchange in marine microplankton communities near Hawaii

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Tracer exchange kinetics were consistent with the view that microplankton of waters near Hawaii produced and assimilated dissolved orthophosphate and dissolved compounds other than orthophosphate at roughly equal rates in experiments conducted in September, 1982. Using simple exchange models plus chemical measurements, we inferred that material other than orthophosphate could sometimes dominate the soluble molybdate-reactive pool (SRP), as is frequently the case in fresh waters. Where phosphorus exchange was most rapid, the tracer kinetics suggested that some fraction of the plankton community was disproportionately responsible for dissolved phophorus exchange. Comparisons against independent measurements of rapid phytoplankton turnover in these communities supported the conclusion that dissolved compounds other than orthophosphate were rapidly cycled and formed an important substrate for plankton growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Azam, F., T. Fenchel, J. G. field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad: The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983)

    Google Scholar 

  • Barsdate, R. J., R. T. Prentki and T. Fenchel: Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25, 239–251 (1974)

    Google Scholar 

  • Berman, M. and M. F. Weiss: SAAM Manual, 239 pp. U.S. Dept. Health, Education and Welfare Publication NIH-78-180, 1978

  • Bienfang, P. K. and M. Takahashi: Ultraplankton growth rates in a subtropical ecosystem. Mar. Biol. 76, 213–218 (1983)

    Google Scholar 

  • Chamberlain, W. and J. Shapiro: On the biological significance of phosphate analysis: comparison of standard and new methods with a bioassay. Limnol. Oceanogr. 14, 921–927 (1969)

    Google Scholar 

  • Cuhel, R. L., H. W. Jannasch, C. D. Taylor and D. R. S. Lean: Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean. Limnol. Oceanogr. 28, 1–18 (1983)

    Google Scholar 

  • Curric, D. and J. Kalff: The relative importance of bacterioplankton versus phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29, 311–321 (1984)

    Google Scholar 

  • Draper, N. R. and H. Smith: Applied regression analysis, 407 pp. New York: John Wiley and Sons 1966

    Google Scholar 

  • Fitzwater, S. E., G. A. Knauer and J. H. Martin: Metal contamination and its effect on primary production measurements. Limnol. Oceanogr. 27, 544–551 (1982)

    Google Scholar 

  • Glibert, P. M., F. Lipschultz, J. J. McCarthy and M. A. Altabet: Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27, 639–650 (1982)

    Google Scholar 

  • Harrison, W. G.: Uptake and recycling of soluble reactive phosphorus by marine microplankton. Mar. Ecol. Prog. Ser. 10, 127–135 (1983)

    Google Scholar 

  • Harrison, W. G., F. Azam, E. H. Renger and R. W. Eppley: Some experiments on phosphate assimilation by coastal marine plankton. Mar. Biol. 40, 9–18 (1977)

    Google Scholar 

  • Johannes, R. E.: Phosphorus excretion as related to body size in marine animals: the significance of nannozooplankton in nutrient regeneration. Science, N.A. 146, 923–924 (1964)

    Google Scholar 

  • Johnson, D. L.: Simultaneous determination of arsenate and phosphate. Environ. Sci. Technol. 5, 411–414 (1971)

    Google Scholar 

  • Kuenzler, E. J.: Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol. 6, 7–13 (1970)

    Google Scholar 

  • Kuenzler, E. J., D. W. Stanley and J. P. Koenings: Nutrient kinetics of phytoplankton in the Pamlico River, North Carolina. Water Resources Research Unit report No. 139, 1–163 (1979)

  • Kuenzler, E. J. and J. P. Perras: Phosphatases of marine algae. Biol. Bull. mar. biol. Lab., Woods Hole 128, 271–284 (1965)

    Google Scholar 

  • Laws, E. A.: Isotope dilution models and the mystery of the vanishing 15N. Limnol. Oceanogr. 29, 379–386 (1984)

    Google Scholar 

  • Laws, E. A., D. G. Readalje, L. W. Haas, P. K. Bienfang, R. W. Eppley, W. G. Harrison, D. M. Karl and J. Marra: High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29, 1161–1169 (1984)

    Google Scholar 

  • Lean, D. R. S.: Phosphorus dynamics in lake water. Science, N.Y. 179, 678–680 (1973)

    Google Scholar 

  • Lean, D. R. S. and E. White: Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Can J. Fish. aquat. Sci. 40, 147–155 (1983)

    Google Scholar 

  • Levine, S. N. and D. W. Schindler: Radiochemical analysis of orthophosphate concentrations and seasonal change in the flux of orthophosphate to the seston in two Canadian Shield lakes. Can. J. Fish. aquat. Sci. 37, 479–487 (1980)

    Google Scholar 

  • Nalewajko, C. and D. R. S. Lean: Phosphorus. In: The physiological ecology of phytoplankton, pp 191–233. Ed. by I. Morris. Oxford: Blackwell 1980

    Google Scholar 

  • Norman, J. C. and P. E. Sager: Modelling phosphorus transfer rates in lake water. J. theor. Biol. 71, 381–385 (1978)

    Google Scholar 

  • Paerl, H. W. and M. T. Downes: Biological availability of low vs high molecular weight reactive phosphorus. Can. J. Fish. aquat. Sci. 35, 1639–1643 (1978)

    Google Scholar 

  • Pages, J. and L. Lemasson: Essai de modelisation de l'assimilation de 32P par le phytoplankton. Oceanogr. Trop. 17, 145–154 (1982)

    Google Scholar 

  • Perry, M. J.: Phosphorus utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the Central North pacific. Limnol. Oceanogr. 21, 88–107 (1976)

    Google Scholar 

  • Peterson, B. J.: Aquatic primary productivity and the 14CO2 method: a history of the productivity problem. A. Rev. Ecol. Syst. 11, 369–385 (1980)

    Google Scholar 

  • Pomeroy, L. R., H. M. Mathews and H. S. Min: Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr. 8, 50–55 (1963)

    Google Scholar 

  • Rigler, F. H.: A dynamic view of the phosphorus cycle in lakes. In: Environmental phosphorus handbook, pp 539–572. Ed. by E. J. Griffiths, A. Beeton, J. M. Spence and D. T. Mitchell. New York: John Wiley and Sons 1973

    Google Scholar 

  • Ryther, J. H. and W. M. Dunstan: Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science, N.Y. 171, 1008–1013 (1971)

    Google Scholar 

  • Sheppard, C. W.: Basic principles of the tracer method, 282 pp. New York: John Wiley and Sons 1962

    Google Scholar 

  • Smith, D. F.: Quantitative analysis of the functional relationships existing between ecosystem components. I. Analysis of the linear intercompartment mass transfers. Oecologia 16, 97–106 (1974)

    Google Scholar 

  • Smith, R. E. H. and T. Platt: Carbon exchange and 14C tracer methods in a nitrogen-limited diatom, Thalassiosira pseudonana. Mar. Ecol. Prog. Ser. 16, 75–87 (1984)

    Google Scholar 

  • Solórzano, L. and J. H. Sharp: Determination of total dissolved phosphorus and particulate dissolved phosphorus in natural waters. Limnol. Oceanogr. 25, 754–758 (1980)

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. J. Fish. Res. Bd Can. Bull. 167, 1–310 (1972)

    Google Scholar 

  • Taft, J. L. and J. J. McCarthy: Uptake and release of phosphorus by phytoplankton in the Chesapeake Bay estuary, U.S.A. Mar. Biol. 33, 21–32 (1975)

    Google Scholar 

  • Taylor, W. D. and D. R. S. Lean: Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. aquat. Sci. 38, 1316–1321 (1981)

    Google Scholar 

  • Watt, W. D. and F. R. Hayes: Tracer study of the phosphorus cycle in sea water. Limnol. Oceanogr. 8, 276–285 (1963)

    Google Scholar 

  • White, E., G. Payne, S. Pickmere and F. R. Pick: Factors influencing orthophosphate turnover times: a comparison of Canadia and New Zealand lakes. Can. J. Fish. aquat. Sci. 39, 469–474 (1982)

    Google Scholar 

  • Williams, P. J. LeB, K. R. Heinemann, J. Marra and D. A. Purdie: Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters. Nature, Lond. 305, 49–50 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Doyle, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.E.H., Harrison, W.G. & Harris, L. Phosphorus exchange in marine microplankton communities near Hawaii. Marine Biology 86, 75–84 (1985). https://doi.org/10.1007/BF00392581

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392581

Keywords

Navigation