Advertisement

Marine Biology

, Volume 86, Issue 1, pp 37–45 | Cite as

Cortical and endosomal structure of the marine sponge Stelletta grubii

  • T. L. Simpson
  • P. F. Langenbruch
  • L. Scalera-Liaci
Article

Abstract

The fine structure of the marine astrophorid sponge Stelletta grubii is described for the first time. The following new data are presented: spongin is present, choanocyte chambers are diplodal, intercellular symbiotic bacteria are numerous and unequally distributed in the cortex and endosome, and collagenous fibril bundles are associated with lophocyte activity and are not elastic fibers. The cortex contains numerous fibril bundles, fewer symbionts, very few cells, and transitional zones with higher archeocyte density near the surface and endosome. Limited phagocytosis of the bacterial symbionts is observed. This species appears to be dioecious and oviparous. These observations suggest that the enigmatic species Chondrosia reniformis is closely related to S. grubii and that it should be placed within or near the astrophorids. The rhizoids of the red alga Phyllophora palmettoides penetrate the sponge tissue without eliciting the development of a structurally specialized contact zone in the sponge matrix or of a limiting epithelium.

Keywords

Sponge Fibril Contact Zone Collagenous Fibril Transitional Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bagby, R.: The fine structure of pinacocytes in the marine sponge Microciona prolifera (Ellis and Solander). Z. Zellforsch. 105, 579–594 (1970)Google Scholar
  2. Brien, P.: Les Demosponges. In: Traité de Zoologie, Vol. III. Fasc. 1. pp 133–461. Ed. by P.-P. Grassé. Paris: Masson et Cie 1973Google Scholar
  3. Connes, R. et J.-M. Artiges: Nature chimique, structure et biosynthèse de l'enveloppe gemmulaire chez une demosponge marine. Archs Zool. exp. gén. 121, 213–225 (1980)Google Scholar
  4. Diaz, J.-P.: Variations, differenciations et fonctions des catégories cellulaires de la demosponge d'eau saumâtre, Suberites massa Nardo, au cours du cycle biologique annuel et dans conditions expérimentales, 332 pp. Thèse, Université de Sciences Tech. Languedoc, Montpellier 1979Google Scholar
  5. Evans, C. W.: The ultrastructure of larvae from the marine sponge Halichondria moorei Bergquist (Porifera, Demospongiae). Cah. Biol. mar. 18, 427–433 (1977)Google Scholar
  6. Gallissian, M.-F. et J. Vacelet: Ultrastructure de quelques stades de l'ovogenèse de spongiaires du genre Verongia (Dictyoceratida). Annls Sci. nat. (sér. b, Zool.) 18, 381–404 (1976)Google Scholar
  7. Garrone, R.: Fibrogenése du collagène chez l'éponge Chondrosia reniformis Nardo (Démosponge Tetractinellide). Ultrastructure et fonction des lophocytes. C. r. hebd. Séanc. Acad. Sci., Paris (Sér. D) 273, 1832–1835 (1971)Google Scholar
  8. Garrone, R.: Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix, 250 pp. Basel: S. Karger 1978Google Scholar
  9. Herland-Meewis, H.: Contribution à l'étude histologique des spongiaires. Annls Soc. r. zool Belg. 79, 5–36 (1948)Google Scholar
  10. Langenbruch, P. F.: Body structure of marine sponges. I. Arrangement of the flagellated chambers in the canal system of Reniera sp. Mar. Biol. 75, 319–325 (1983)Google Scholar
  11. Ledger, P. W.: Aspects of the secretion and structure of calcareous sponge spicules, 125 pp. Thesis, University College of North Wales, Bangor 1976Google Scholar
  12. Lévi, C.: Systématique de la classe des Démospongiaria (Demosponges). In: Traité de zoologie, Vol. III. Fasc. 1. pp 577–631. Ed. by P.-P. Grassé. Paris: Masson et Cie 1973Google Scholar
  13. Lévi, C. et P. Lévi: Embryogenèse de Chondrosia reniformis (Nardo), démosponge ovipare, et transmission des bactérie symbiotique. Annls Sci. nat. (sér. b, Zool.) 18, 367–380 (1976)Google Scholar
  14. Lévi, C. et A. Porte: Etude microscope électronique de l'éponge Oscarella lobularis Schmidt et de sa larvae amphiblastula. Cah. Biol. mar. 3, 307–315 (1962)Google Scholar
  15. Liaci, L. et M. Sciscioli: Osservazioni sulla maturazionz sessuale di un tetractinellide: Stelletta grubii O.S. (Porifera). Archo zool. ital. 52, 169–176 (1967)Google Scholar
  16. Mackie G. O. and C. L. Singula: Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil. Trans. R. Soc. 301, 365–400 (1983)Google Scholar
  17. Reiswig, H. M.: The aquiferous system of three marine Demospongiae. J. Morph. 145, 493–502 (1975)Google Scholar
  18. Sciscioli, M.: Associazione tra la demospongia Stelletta grubii (O. Schmidt) e la rodoficea Phyllophora palmettoides Ag. Atti Soc. pelorit. Sci. fis. mat. nat. 12, 555–560 (1966)Google Scholar
  19. Simpson, T. L.: The cell biology of sponges, 662 pp. New York: Springer-Verlag 1984Google Scholar
  20. Sollas, W. S.: Report on the Tetractinellida collected by H.M.S. Challenger during the years 1873–1876. Rep. scient. Results Voyage HMS Challenger (s: Zool.) 25, 1–458 (1888)Google Scholar
  21. Vacelet, J.: Etude en microscopie électronique de l'association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J. Microscopie Biol. cell. 23, 271–288 (1975)Google Scholar
  22. Weissenfels, N.: Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). IX. Rasterelectronenmikroskopische Histologie und Cytologie. Zoomorphologie 100, 75–87 (1982)Google Scholar
  23. Wilkinson, C. R.: Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar. Biol. 49, 177–185 (1978)Google Scholar
  24. Wilkinson, C. R.: Cyanobacteria symbiotic in marine sponges. In: Endocytobiology, endosymbiosis and cell biology, Vol. I. pp 553–563. Ed. by W. Schwemmler and H. E. A. Schenk. New York: Walter de Gruyter 1980Google Scholar
  25. Wilkinson, C. R. and R. Garrone: Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Nutrition in the lower Metazoa, pp 157–161. Ed. by D. C. Smith and Y. Tiffon. Oxford: Pergamon Press 1980Google Scholar
  26. Willenz, Ph.: Aspects cinetiques quantitatifs et ultrastructuraux de l'endocytose, la digestion, et l'exocytose chez les eponges, 107 pp. Thèse, Université Libre de Bruxelles 1983Google Scholar
  27. Willenz Ph. and G. Van de Vyver: Endocytosis of latex beads by the exopinacoderm in the freshwater sponge Ephydatia fluviatilis. An in vitro and in situ study in SEM and TEM. J. Ultrastruct. Res. 79, 294–306 (1982)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. L. Simpson
    • 1
  • P. F. Langenbruch
    • 2
  • L. Scalera-Liaci
    • 3
  1. 1.Laboratore d'Histologie et de Biologie Tissulaire et Centre de Microscopie Electronique Appliquée à la Biologie et à la GéologieUniversité Claude BernardVilleurbanne CedexFrance
  2. 2.Zoologisches Institut, Entwicklungsgeschichtliche Abteilung; Poppelsdorfer SchloßUniversität BonnBonn 1Federal Republic of Germany
  3. 3.Istituto di Zoologia Ed Anatomia ComparataUniversita di VariItaly

Personalised recommendations