Marine Biology

, Volume 86, Issue 1, pp 13–19 | Cite as

Origin and nature of spermatophoric mass of the spiny lobster Panulirus homarus

  • T. Radha
  • T. Subramoniam


In the spiny lobster Panulirus homarus (Linnaeus) the spermatophoric mass consists of a highly convoluted tube, containing the sperm mass and a gelatinous matrix. The spermatophoric components have their origin in the proximal vas deferens and the completed spermatophoric mass is stored within the distal dilated part of the vas deferens. In the proximal vas deferens the inner glandular epithelial cells give rise to leaf-like typhlosoles which gradually diminish in size and finally disappear in the distal vas deferens. The secretions originating from the typhlosole form the outer gelatinous matrix of the spermatophoric mass. Histochemical observations reveal that the wall of the spermatophore tube consists of neutral mucopolysaccharide, whereas the sperm mass and the gelatinous matrix are rich in acidic mucopolysaccharides. Both polyacrylamide gel electrophoresis and agarose gel electrophoresis were used to separate the acidic mucopolysaccharide (AMPS) complexed with the proteins and the simple proteins. In addition, AMPS have been isolated following the method of Rahemtulla and Lovtrup (1974) and used for electrophoresis. In both the polyacrylamide gel electrophoresis and agarose gel electrophoresis, the extracted acid mucopolysaccharides give only a single fraction which, in comparison with the standard acid mucopolysaccharides, corresponds to chondroitin sulphate. The functional significance of the chondroitin sulphate and neutral mucopolysaccharides in the spermatophoric components of P. homarus is discussed in relation to their functional role in spermatophore hardening and protection of the delicate spermatozoa during their prolonged storage on the sternum of the female.


Chondroitin Sulphate Single Fraction Mucopolysaccharide Standard Acid Prolonged Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aminoff, D., W. W. Binkley, R. Schaffer and R. W. Mowry: Analytical methods for carbohydrates. In: The carbohydrates, Vol. 2, pp 748–809. Ed by W. Pigman and D. Horton. New York: Academic Press 1978Google Scholar
  2. Berry, P. F. and A. E. F. Heydorn: A comparison of the spermatophoric masses and mechanisms of fertilization in southern African spiny lobsters (Palinuridae). Oceanogr. Res. Inst. (Durban), Invest. Rep. 25, 1–18 (1970)Google Scholar
  3. Chayen, J., I. Bitensky and R. G. Butcher: Practical histochemistry, pp 1–271. New York: John Wiley and Sons 1973Google Scholar
  4. Davis B. J.: Disc electrophoresis. ii. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404–427 (1964)Google Scholar
  5. Deecaraman, M. and T. Subramoniam: Male reproductive tract and accessory glands of a stomatopod, Squilla holoschista. Int. J. Invertebr. Repod. 2, 175–188 (1980)Google Scholar
  6. Dudenhausen, E. E. and P. Talbot: An ultrastructural comparison of soft and hardened spermatophores from the crayfish, Pacifastacus leniusculus Data. Can. J. Zool. 61, 182–194 (1983)Google Scholar
  7. Jaques, L. B., T. K. Sue, N. M. Mc Duffie and S. Wice: Optical densitometry on electrophoretic agarose slides. Methods Biochem. Anal. 24, 203–312 (1977)Google Scholar
  8. Kent, P. W. and M. W. Whitehouse: Biochemistry of the aminosugars, pp 1–311. London: Butterworths Scientific Publication, 1955Google Scholar
  9. King, J. E.: A study on the reproductive organs of the common marine shrimp, Penaeus setiferaus (Linnaeus) Biol. Bull. mar. biol. Lab., Woods Hole 94, 244–262 (1948)Google Scholar
  10. Malek, S. R. A. and F. M. Bawab: The formation of the spermatophore in Penaeus kerathurus (Forskal, 1975) (Decapoda, Penaeidae). 1. The initial formation of sperm mass. Crustaceana (Leiden) 26, 273–285 (1974)Google Scholar
  11. Matthews, D. C.: The origin, development and nature of the spermatophoric mass of the spiny lobster, Panulirus penicillatus (Oliver) Pac. Sci. 5, 359–371 (1951)Google Scholar
  12. Pearse, A. G. E.: Histochemistry. Theoretical and applied. Vol. 1, pp 1–759. London: Churchill Livingstone 1968Google Scholar
  13. Pigman, W. and D. Horton: The carbohydrates, Vol. 2 B, pp 592–604. New York: Academic Press 1970Google Scholar
  14. Rahemtulla, F. and S. Lovtrup: The comparative biochemistry of invertebrate mucopolysaccharides — I. Methods: Platyhelminthes. Comp. Biochem. Physiol. 49 B, 631–637 (1974)Google Scholar
  15. Smith, I.: Chromatographic and electrophoretic techniques, Vol. 2, pp 365–389. London: William Heinemann Medical Books Ltd. 1968Google Scholar
  16. Smith, J. V. and A. N. Ratchiffe: Host defence reactions of the shore crab, Carcinus maenus (L) in vitro. J. mar. biol. Ass. U.K. 58, 367–379 (1978)Google Scholar
  17. Spalding, J. F.: The nature and formation of the spermatophore and sperm plug in Carcinus maenas. Q. J. microsc. Sci. 83, 299–422 (1942)Google Scholar
  18. Subramoniam, T.: Spermatophore formation in two intertidal crabs Albunea symnista and Emerita asiatica (Decapoda, Anomura). Biol. Bull. mar. biol. Lab., Woods Hole 166, 78–95 (1984)Google Scholar
  19. Uma, K. and T. Subramoniam: Histochemical characteristics of spermatophore layers of Scylla serrata (Forskal) (Decapoda, Portunidae) Int. J. Invertebr. Reprod. 1, 31–41 (1979)Google Scholar
  20. White, A., P. Handler, E. L. Smith, R. L. Hill and R. Lehman: Principles of biochemistry, pp 1155. London: Academic Press 1978Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. Radha
    • 1
  • T. Subramoniam
    • 1
  1. 1.Unit of Invertebrate Reproduction, Department of ZoologyUniversity of MadrasMadrasIndia

Personalised recommendations