Skip to main content
Log in

Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Electrophoretic data were used to examine the relationship between genotype and growth form, and to assess the contribution of asexual reproduction to recruitment within six local populations of the agaricid coral Pavona cactus from the central and northern Great Barrier Reef. The data revealed the presence of highly replicated clonal genotypes in the five densest populations. In three cases, samples of 50 to 60 colonies collected from 25 m2 areas within the Eclipse Island and Pandora Reef populations each consisted of colonies with only two distinct 4-locus genotypes. More intensive sampling of the population at Eclipse Island showed that colonies with the same 4-locus genotypes were separated by distances of up to 93 m. In contrast, the population at Watson's Bay (Lizard Island) consisted of a few widely scattered and genetically distinct colonies. The samples collected from each population contained a range of growth forms including, in some cases, the entire morphological range described for this species. A strong association of genotype and growth form was detected in samples from all populations, with the exception of Watson's Bay where no such comparison was possible. Nevertheless, some genotypes were represented by more than one growth form and this could reflect the effects of limited phenotypic plasticity. The effects of asexual reproduction reduced the value of these data as a test of the genetic connectedness of the six populations studied. The genetic distance between samples was not simply correlated with geographic distance. This may reflect either the true structure of the breeding population(s) or the effects of asexual reproduction on estimates of allelic frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Ayre, D. J. (1983). The effects of asexual reproduction and intergenotypic aggression on the genotypic structure of populations of the sea anemone Actinia tenebrosa. Oecologia 57: 158–165

    Google Scholar 

  • Ayre, D. J. (1984). The effects of sexual and asexual reproduction on geographic variation in the sea anemone Actinia tenebrosa. Oecologia 62: 222–229

    Google Scholar 

  • Ayre, D. J. (1985). Localized adaptation of clones of the sea anemone Actinia tenebrosa. Evolution Lawrence, Kansas 39: 1250–1260

    Google Scholar 

  • Bell, G. (1982). The masterpiece of nature: the evolution of the genetics of sexuality. London, Croon Helm

    Google Scholar 

  • Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155

    Google Scholar 

  • Brakel, W. H. Z. (1977). Corallite variation in Porites and the species problem in corals. Proc. 3rd int. Symp. coral Reefs 2: 547–462 [Taylor D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami, Miami]

    Google Scholar 

  • Curie-Cohen, M. (1982). Estimates of inbreeding in a natural population: a comparison of sampling properties. Genetics, Austin, Tex. 100: 339–358

    Google Scholar 

  • Dustan, P. (1979). Distribution of zooxanthelle and photosynthetic chloroplast pigments of the reef building coral Montastrea annularis Ellis and Solander, in relation to depth on a West Indian coral reef. Bull. mar. Sci. 27: 79–95

    Google Scholar 

  • Foster, A. B. (1979). Phenotypic plasticity in the reef corals Montastrea annularis (Ellis and Solander) and Sidastrea sidera (Ellis and Solander). J. exp. mar. Biol. Ecol. 39: 25–54

    Google Scholar 

  • Foster, A. B. (1980). Environmental variation in skeletal morphology within the Caribbean reef corals Montastrea annularis and Sidastrea siderea. Bull. mar. Sci. 30: 678–709

    Google Scholar 

  • Garbutt, K., Bazzaz, F. A.; Levin, D. A. (1985). Population and genotype niche width in clonal Phlox paniculata. Am. J. Bot. 72: 640–648

    Google Scholar 

  • Graus, R. R., Macintyre, I. G. (1982). Variation in the growth forms of the reef coral Montastrea annularis (Ellis and Solander): a quantitative examination of growth response to light distribution using computer simulation. Smithson. Contr. mar. Sci. 12: 441–464

    Google Scholar 

  • Hoffmann, R. J. (1986). Variation in the contribution of asexual reproduction to the genetic structure of populations of the sea anemone Metridium senile. Evolution Lawrence Kansas 40: 357–365

    Google Scholar 

  • Jain, S. K. (1979). Adaptive strategies: topics in plant population biology, polymorphism and homeostasis. In: Solbrig, O. T., Jain, G. B., Johnson, G. B., Raven, P. H. (eds.) New York, Columbia University Press, p. 160–187

    Google Scholar 

  • Johnson, M. S., Threlfall, T. J. (1987). Fissiparity and population genetics of Coscinasterias calamaria. Mar. Biol. 93: 517–525

    Google Scholar 

  • Marshall, D. R., Jain, S. K. (1968). Phenotypic plasticity of Avena fatua and A. barbata. Am. Nat. 102: 457–467

    Google Scholar 

  • Maragos, J. E. (1972). A study of the ecology of Hawaiian reef corals. Ph. D. thesis. University of Hawaii, Honolulu

    Google Scholar 

  • Mayr, E. (1970). Populations, species and evolution. Belknap, London

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590

    Google Scholar 

  • Oliver, J. K., Chalker, B. E., Dunlap, W. C. (1983). Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. I. Long-term growth responses of Acropora formosa (Dana, 1846). J. exp. mar. Biol. Ecol. 73: 11–35

    Google Scholar 

  • Potts, D. C. (1978). Differentiation in coral populations. Atoll Res. Bull. 220: 55–74

    Google Scholar 

  • Potts, D. C. (1984). Natural selection in experimental populations of reef-building corals (Scleractinia). Lawrence, Kansas. 38: 1059–1078

    Google Scholar 

  • Roos, P. J. (1967). Growth and occurrence of the reef coral Porites asteroides Lamarck in relation to submarine irradiance distribution. Drukkerij Elinwijk, Utrecht.

    Google Scholar 

  • Rosen, B. R. (1981). The tropical high diversity enigma — the coral's eye view. In: Florey, P. L. (ed.) Chance change and challenge. The evolving biosphere. British Museum (Natural History) and Cambridge University Press, Cambridge, p. 103–129

    Google Scholar 

  • Scheiner, S. M., Goodnight, C. J. (1984). The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Lawrence, Kansas 38: 845–855

    Google Scholar 

  • Schlicting, C. D. Levin, D. A. (1984). Phenotypic plasticity of annual Phlox: tests of some hypotheses. Am. J. Bot. 71: 252–260

    Google Scholar 

  • Sokal, R. R. and P. H. A. Sneath (1963). Principles of numerical taxonomy. San Francisco: W. H. Freeman & Co.

    Google Scholar 

  • Stephenson, T. A., Stephenson, A. (1933). Growth and asexual reproduction in corals. Scient. Rep. Gt Barrier Reef Exped. 3: 167–217

    Google Scholar 

  • Stoddart, J. A. (1983). A genotypic diversity measure. J. Hered. 74: 489–490

    Google Scholar 

  • Stoddart, J. A. (1984a). Genetical structure within populations of the coral Pocillopora damicornis. Mar. Biol. 81: 19–30

    Google Scholar 

  • Stoddart, J. A. (1984b). Genetic differentiation amongst populations of the coral Pocillopora damicornis off southwestern Australia. Coral Reefs 3: 149–156

    Google Scholar 

  • Stoddart, J. A. (1988). Coral populations fringing islands: larval connections. Aust. J. mar. Freshwat. Res. (in press)

  • Vaughan, T. W. (1911). The Madreporaria and marine bottom deposits of southern Florida. Yb. Carnegie Instn Wash. 10: 147–156

    Google Scholar 

  • Vaughan, T. W. (1914). Reef corals of the Bahamas and southern Florida. Yb. Carnegie Instn Wash. 13: 222–226

    Google Scholar 

  • Veron, J. E. N. (1982). The species concept in the “Scleractinia of Eastern Australia”. Proc. 4th int. Symp. coral Reefs 2: 183–186. [Gomez, E.D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]

    Google Scholar 

  • Veron, J. E. N., Pichon, M. (1976). Scleractinia of eastern Australia. Part I. Families Thanasteriidae, Astrocoeniidae, Pocilloporidae. Monogr. Ser. Aust. Inst. mar. Sci. 1: 1–86

    Google Scholar 

  • Veron, J. E. N., Pichon, M. (1980). Scleractinia of eastern Australia. Part III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae. Monogr. Ser. Aust. Inst. mar. Sci. 4: 1–485

    Google Scholar 

  • Veron, J: E. N., Pichon, M. (1982). Scleractinia of eastern Australia. Part IV. Family Poritidae. Monogr. Ser. Aust. Inst. mar. Sci. 5: 1–159

    Google Scholar 

  • Veron, J. E. N., Pichon, M. Wijsman-Best, M. (1977). Scleractinia of eastern Australia. Part II. Families Faviidae, Trachyphyliidea. Monogr. Ser. Aust. Inst. mar. Sci. 3: 1–233

    Google Scholar 

  • Veron, J. E. N., Wallace, C. C. (1984). Scleractinia of eastern Australia. Part VI. Family Acroporidae. Monogr. Ser. Aust. Inst. mar. Sci. 6: 1–422

    Google Scholar 

  • Wijsman-Best, M. (1972). Systematics and ecology of New Caledonian Faviinae (Coelenterata-Scleractinia). Bijdr. Dierk. 42: 3–90

    Google Scholar 

  • Williams, G. C. (1975). Sex and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Willis, B. L. (1985). Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proc. 5th int. coral Reef Congr. 4: 107–112. [Gabrie, C. et al. (eds.) Antenne Museum-EPHE, Moorea]

    Google Scholar 

  • Willis, B. L. (1987). Morphological variation in the reef corals Turbinaria mesenterina and Pavona cactus: synthesis of transplant, histocompatibility, electrophoresis, growth and reproduction studies. Ph. D. thesis. James Cook University of North Queensland

  • Willis, B. L., Ayre, D. J. (1985). Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia 65: 516–525

    Google Scholar 

  • Yonge, C. M. (1968). Living corals. Proc. R. Soc. (Ser. B) 169: 329–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Contribution No. 47 from the Ecology and Genetics Group of the University of Wollongong

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayre, D.J., Willis, B.L. Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity. Mar. Biol. 99, 495–505 (1988). https://doi.org/10.1007/BF00392557

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392557

Keywords

Navigation