Skip to main content
Log in

Method for determination of turgor pressure in macroalgae, with particular reference to the Phaeophyta

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A procedure is described for the determination of the internal osmotic pressure and turgor pressure of marine macroalgae, for use in the laboratory and on the shore. A volume-related parameter (either thallus fresh weight, or area) is measured before and after transfer of plant material to a range of hyperosmotic solutions. Plotting the final fresh weight/area as a percentage of the initial value gives a biphasic curve, with an initial component of negative slope due to the change in thallus volume in less extreme hyperosmotic solutions, where the non-rigid thallus contracts in response to decreasing cell turgor pressure. The second component has a shallower slope and represents plasmolysis in more extreme hyperosmotic solutions, i.e., where turgor pressure is reduced to zero and the protoplast shrinks away from the cell wall; the extraprotoplast space created by plasmolysis will be filled with the external solution and thus no further changes in weight occur. These two components intersect at the lowest osmotic pressure at which cell turgor is zero. By correcting for any effects of the cell wall on thallus volume, the relationship can be used to calculate internal osmotic pressure and hence turgor pressure, assuming that the remaining change in thallus volume of the initial component is due entirely to variation in the intraprotoplast volume (approximately equivalent to the intraprotoplast water content, determined by subtraction of the extraprotoplast water and dry weight from the thallus fresh weight). Using this procedure, the turgor pressures of Fucus spiralis L., Ectocarpus siliculosus, (Dillw.) Lyngb. and Laminaria digitata (Huds.) Lamour. (from Fife Ness, Scotland, May–August 1987) in a seawater-based medium were 0.82, 0.58 and 1.34 Osmol kg−1, respectively. The turgor pressure of F. spiralis on the shore at Fife Ness (June 1987) was 0.74 Osmol kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Allen, R. D., Jacobsen, L., Joaquin, J., Jaffe, L. F. (1972). Ionic concentrations in developing Pelvetia eggs. Devl Biol. 27: 538–545

    Google Scholar 

  • Bisson, M. A., Gutknecht, J. (1977). Osmotic regulation in the marine alga Codium decorticatum. II. Active chloride influx exerts negative feedback control on the turgor pressure. J. Membrane Biol. 37: 85–98

    Google Scholar 

  • Bisson, M. A., Gutknecht, J. (1980). Osmotic regulation in algae. In: Lucas, W. J., Spanswick, R. M., Dainty, J. (eds.) Membrane transport phenomena: current conceptual issues. Elsevier, Amsterdam, p. 131–142

    Google Scholar 

  • Cram, W. J. (1976). Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. In: Luttge, U., Pitman, M. G. (eds.) Encyclopedia of plant physiology, Vol. 2A. Springer-Verlag, Berlin p. 284–316

    Google Scholar 

  • Green, P. B., Erikson, R. O., Buggy, J. (1971). Metabolic and physiological control of cell elongation rate. In vivo studies of Nitella. Pl. Physiol. 47: 423–430

    Google Scholar 

  • Guggino, S., Gutknecht, J. (1982). Turgor regulation in Valonia macrophysa following acute osmotic shock. J. Membrane Biol. 67: 155–164

    Google Scholar 

  • Hall, A. (1981). Copper accumulation in copper-tolerant and nontolerant populations of the marine fouling alga Ectocarpus siliculosus (Dillw.) Lyngb. Botanica mar. 24: 223–228

    Google Scholar 

  • Hastings, D. F., Gutknecht, J. (1976). Ionic relations and the regulation of turgor pressure in the marine alga Valonia macrophysa. J. Membrane Biol. 28: 263–275

    Google Scholar 

  • Kamiya, N., Tazawa, M., Takata, T. (1963). The relation of turgor pressure to cell volume in Nitella with special reference to mechanical properties of the cell wall. Protoplasma 57: 501–521

    Google Scholar 

  • Kirst, G. O., Bisson, M. A. (1979). Regulation of turgor pressure in marine algae: ions and low molecular weight compounds. Aust. J. Pl. Physiol. 6: 539–556

    Google Scholar 

  • Mabeau, S., Kloareg, B. (1987). Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. J. exp. Bot. 38: 1573–1580

    Google Scholar 

  • Meidner, H., Sheriff, D. W. (1976). Water and plants, Blackie, London

    Google Scholar 

  • Munda, I. M., Kremer, B. P. (1977). Chemical composition and physiological properties of fucoids under conditions of reduced salinity. Mar Biol. 42: 9–15

    Google Scholar 

  • Percival, E. (1979). The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br. phycol. J. 14: 103–117

    Google Scholar 

  • Provasoli, L. (1963) Growing marine seaweeds. Proc. 4th int. Seaweed Symp. 9–17. [de Virville, D., Feldmann, J. (eds.) Pergamon, Oxford]

    Google Scholar 

  • Ray, P. M., Green, P. B., Cleland, R. (1972). Role of turgor in plant cell growth. Nature, Lond. 239: p. 163

    Google Scholar 

  • Reed, R. H. (1980). The influence of salinity upon cellular mannitol concentration of the euryhaline marine alga Pilayella littoralis (L.) Kjellm. (Phaeophyta, Ectocarpales): preliminary observations. Botanica mar. 23: 603–605

    Google Scholar 

  • Reed, R. H. (1983). The osmotic responses of Polysiphonia lanosa (L.) Tandy from marine and estuarine sites: evidence for incomplete recovery of turgor. J. exp. mar. Biol. Ecol. 68: 169–193

    Google Scholar 

  • Reed, R. H. (1984). Use and abuse of osmo-terminology. Pl. Cell Envir. 7: 165–170

    Google Scholar 

  • Reed, R. H., Barron, J. A. (1983). Physiological adaptation to salinity change in Pilayella littoralis from marine and estuarine sites. Botanica mar. 26: 409–416

    Google Scholar 

  • Reed, R. H., Collins, J. c., Russell, G. (1980). The effects of salinity upon cellular volume of the marine red alga Porphyra purpurea (Roth.) C. Ag. J. exp. Bot. 31: 1521–1537

    Google Scholar 

  • Ritchie, r. J., Larkum, A. W. D. (1982). Cation exchange properties of the cell walls of Enteromorpha intestinalis (L.) Link (Ulvales, Chlorophyta). J. exp. Bot. 33: 125–139

    Google Scholar 

  • Zimmermann, U. (1978). Physics of turgor- and osmoregulation. A. Rev. Pl. Physiol. 29: 121–148

    Google Scholar 

  • Zimmermann, U., Steudle, E. (1971). Effects of potassium concentration and osmotic pressure of sea water on cell-turgor pressure of Chaetomorpha linum. Mar Biol. 11: 132–137

    Google Scholar 

  • Zimmermann, U., Steudle, E. (1974). The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J. Membrane Biol. 16: 331–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, P.J., Reed, R.H. Method for determination of turgor pressure in macroalgae, with particular reference to the Phaeophyta. Mar. Biol. 99, 473–480 (1988). https://doi.org/10.1007/BF00392554

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392554

Keywords

Navigation