Skip to main content
Log in

Significance of macroalgal polymorphism: intraspecific tests of the functional-form model

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The functional-form model, developed for comparisons among species in a diverse macroalgal community, was used to examine the functional significance of macroalgal polymorphism (i.e., the existence of genetically distinct morphotypes within a single species). Four predictions of this model were examined along a continuum of morphotypes represented by eight clones of the red alga Gracilaria tikvahiae McLachlan. These clones had significant differences in calorific contnet, percentage of photosynthetic tissue, net photosynthesis, and specific growth rate. All of these functional attributes were a function of the surface area:volume ratios. Consistent with the predictions of the functional-form model, clones near opposite ends of the surface area:volume continuum had significant differences for these attributes. A cluster analysis of these attributes identified three clusters of clones that agreed well with their surface:volume ratios. Polymorphism in G. tikvahiae increases the ecological and physiological fitness of this species in an estuarine system where spatial and temporal changes in the environment occur. Each morphotype possesses concomitant, ecologically meaningful combinations of benefits and costs which collectively spread the risk from different sources of mortality and thus increase the overall survival of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Brinkhuis, B. H. (1977). Comparisons of salt-marsh fucoid production estimated from three different indices. J. Phycol. 13: 328–335

    Google Scholar 

  • Chapman, A. R. O., Edelstein, T., Power, P. J. (1977). Studies on Gracilaria. I. Morphological and anatomical variation in samples from the lower Gulf of St. Lawrence and New England. Botanica mar. 20: 149–153

    Google Scholar 

  • Dawes, C. J., Moon, R. E., Davis, M. A. (1978). The photosynthetic and respiratory rates and tolerances of benthic algae from a mangrove and salt marsh estuary: a comparative study. Estuar cstl mar. Sci. 6: 175–185

    Google Scholar 

  • Dethier, M. N. (1981). Heteromorphic algal life histories: the seasonal pattern and response to herbivory of the brown crust, Ralfsia californica. Oecologia (Berl.) 49: 333–339

    Google Scholar 

  • Dixon, P. S. (1973). Biology of the Rhodophyta. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Dixon, W. J. (ed.) (1983). BMDP statistical software. University of California Press, Los Angeles

    Google Scholar 

  • Gaines, S. D., Lubchenco, J. (1982). A unified approach to marine plant-herbivore interactions. II. Biogeography. A. Rev. Ecol. Syst. 13: 111–138

    Google Scholar 

  • Grime, J. P. (1977). Evidence for the existence of three primary strategies in the plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 1169–1194

    Google Scholar 

  • Gutknecht, J. (1961). Mechanism of radioactive zinc uptake by Ulva lactuca. Limnol. Oceanogr. 6: 426–431

    Google Scholar 

  • Hanisak, M. D. (1987). Cultivation of Gracilaria and other macroalgae in Florida for energy production. In: Bird, K. T., Benson, P. H. (eds.) Seaweed cultivation for renewable resources. Elsevier, New York, p. 191–218

    Google Scholar 

  • Hanisak, M. D., Ryther, J. H. (1984). Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia 116/117: 295–298

    Google Scholar 

  • Hay, M. E. (1981). The functional morphology of turf forming seaweeds: persistence in stressful marine habitats. Ecology 62: 739–750

    Google Scholar 

  • Kanwisher, J. W. (1966). Photosynthesis and respiration in some seaweeds. In: Barnes, H. (ed.) Some contemporary studies in marine science. Allen & Unwin, London, p. 407–422

    Google Scholar 

  • Kim, C. S., Humm, H. J. (1965). The red alga Gracilaria foliifera with special reference to the cell wall polysaccharides. Bull. mar. Sci. 15: 1036–1050

    Google Scholar 

  • King, R. J., Schramm, W. (1976). Photosynthetic rates of benthic marine algac in relation to light intensity and seasonal variations. Mar. Biol. 37: 215–222

    Google Scholar 

  • Koehl, M. A. R., Wainwright, S. A. (1977). Mechanical adaptations of a giant kelp. Limnol. Oceanogr. 22: 1067–1071

    Google Scholar 

  • Larkum, A. W. S., Drew, E. A., Crossett, R. N. (1967). The vertical distrisbution of attached marine algae in Malta. J. Ecol. 55: 361–371

    Google Scholar 

  • Littler, M. M. (1979). The effects of bottle volume, thallus weight, oxygen saturation levels, and water movement on apparent photosynthetic rates in marine algae. Aquat. Bot. 7: 21–34

    Google Scholar 

  • Littler, M. M. (1980). Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Botanica mar. 22: 161–165

    Google Scholar 

  • Littler, M. M., Arnold, K. E. (1982). Primary productivity of marine macroalgal functional-form groups from southwestern North America. J. Phycol. 18: 307–311

    Google Scholar 

  • Littler, M. M., Littler, D. S. (1980). The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116: 25–44

    Google Scholar 

  • Littler, M. M., Littler, D. S. (1983). Heteromorphic life-history strategies in the brown alga Scytosiphon lomentaria (Lyngb.) Link. J. Phycol. 19: 425–431

    Google Scholar 

  • Littler, M. M., Littler, D. S. (1984). Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. J. exp. mar. Biol. Ecol. 74: 13–34

    Google Scholar 

  • Littler, M. M., Littler, D. S., Taylor, P. R. (1983). Evolutionary strategies in a tropical barrier reef system: functional-form groups of marine macroalgae. J. Phycol. 19: 223–231

    Google Scholar 

  • Littler, M. M., Murray, S. N. (1978). Influence of domestic wastes on energetic pathways in rocky intertidal communities. J. appl. Ecol. 15: 583–595

    Google Scholar 

  • Lubchenco, J., Cubit, J. (1980). Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61: 676–687

    Google Scholar 

  • McLachlan, J. (1979). Gracilaria tikvahiae sp. nov. (Rhodophyta, Gigartinales, Gracilariaceae) from the northwestern Atlantic. Phycologia 18: 19–23

    Google Scholar 

  • Neushul, M. (1972). Punctional interpretation of benthic marine algal morphology. In: Abbott, I. A., Kurogi, M. (eds.) Contributions to the systematics of benthic marine algae of the North Pacific. Japanese Society of Phycology, Kobe, p. 47–74

    Google Scholar 

  • Norton, T. A., Mathieson, A. C., Neushul, M. (1982). A review of some aspects of form and function in seaweeds. Botanica mar. 25: 501–510

    Google Scholar 

  • Odum, E. P., Kuenzler, E. J., Blunt, M. X. (1958). Uptake of P32 and primary productivity in marine benthic algae. Limnol. Oceanogr. 3: 340–345

    Google Scholar 

  • Paine, R. T., Vadas, R. L. (1969). Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar. Biol. 4: 79–86

    Google Scholar 

  • Pianka, E. R. (1970). On r- and K-selection. Am. Nat. 104: 592–597

    Google Scholar 

  • Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Watanabe, A., Hatteri, A. (eds.) Cultures and collections of algae. Japanese Society of Plant Physiology, Hakone, p. 63–75

    Google Scholar 

  • Ramus, J. (1978). Seaweed anatomy and photosynthetic performance: the ecological significance of light guides, heterogeneous absorption and multiple scatter. J. Phycol. 14: 352–362

    Google Scholar 

  • Romesburg, H. C. (1984). Cluster analysis for researchers. Wadsworth, Inc., London

    Google Scholar 

  • Rosenberg, G., Ramus, J. (1984). Uptake of inorganic nitrogen and seaweed surface area:volume ratios. Aquat. Bot. 19: 65–72

    Google Scholar 

  • Ryther, J. H., Corwin, N., DeBusk, T. A., Williams, L. D. (1981). Nitrogen uptake and storage by the red alga Gracilaria tikvahiae (McLachlan 1979). Aquaculture, Amsterdam 26: 107–115

    Google Scholar 

  • Slocum, C. J. (1980). Differential susceptibility to grazers in two phases on an intertidal alga: advantages of heteromorphic generations. J. exp. mar. Biol. Ecol. 46: 99–110

    Google Scholar 

  • Sneath, P. H. A., Sokal, R. R. (1973). Principles of numerical taxonomy. W. H. Freeman, San Francisco

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research, 2nd ed. W. H. Freeman & Col., San Francisco

    Google Scholar 

  • Sournia, A. (1982). Form and function in marine phytoplankton. Biol. Rev. 57: 347–394

    Google Scholar 

  • Steneck, R. S., Watling, L. (1982). Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Mar. Biol. 68: 299–319

    Google Scholar 

  • Taylor, W. R. (1957). Marine algae of the northeastern coast of North America. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Taylor, W. R. (1960). Marine algae of the eastern tropical and subtropical coasts and the Americas. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Taylor, P. R., Hay, M. E. (1984). The functional morphology of intertidal seaweeds: the adaptive significance of aggregate versus solitary forms. Mar. Ecol. Prog. Ser. 18: 295–302

    Google Scholar 

  • Van der Meer, J. P. (1979). Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). V. Isolation and characterization of mutant strains. Phycologia 18: 47–54

    Google Scholar 

  • Wassman, E. R., Ramus, J. (1973). Primary-production measurements for the green seaweed Codium fragile in Long Island Sound. Mar. Biol. 21: 289–297

    Google Scholar 

  • Wilkinson, L. (1986). SYSTAT: the system for statistics. SYSTAT Inc., Evanston, Illinois

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanisak, M.D., Littler, M.M. & Littler, D.S. Significance of macroalgal polymorphism: intraspecific tests of the functional-form model. Mar. Biol. 99, 157–165 (1988). https://doi.org/10.1007/BF00391977

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391977

Keywords

Navigation