Marine Biology

, Volume 22, Issue 2, pp 105–129 | Cite as

Feeding behavior and ecology of shallow-water unstalked crinoids (echinodermata) in the Caribbean Sea

  • D. L. Meyer


The feeding behavior, living position, and skeletal morphology of 8 species of reef-dwelling Caribbean comatulid crinoids are intimately related to the regime of water movement prevailing in the microhabitat. These adaptations are related to the dependence of the crinoid suspension-feeding mechanism on externally produced water movements for a continuous food supply. Greater numbers of co-occurring comatulid species (6 to 7) and larger populations have been found off Colombia and Panamá than off Curaçao and Jamaica (4 species). It is suggested that these differences may be related to increased or diversified primary productivity close to the larger land masses. Overal food availability as determined by primary productivity may, thus, be an important factor controlling the regional diversity and abundance of these species.


Large Population Food Availability Food Supply Regional Diversity Feeding Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bassler, R. and M. Moodey: Bibliographic and faunal index of Palaeozoic pelmatozoan echinoderms. Spec. Pap. geol. Soc. Am. 45, 1–734 (1943).Google Scholar
  2. Bayer, F. M., G. L. Voss and C. R. Robins: Report on the marine fauna and benthic shelf-slope communities of the Isthmian region. Bioenvironmental and radiological-safety feasibility studies, Atlantic-Pacific interoceanic canal. Appendix, 311 pp. Columbus: Batelle Memorial Institute 1970.Google Scholar
  3. Breimer, A.: A contribution to the paleoecology of Paleozoic stalked crinoids. Proc. K. ned. Akad. Wet. (Section B) 72 139–150 (1969).Google Scholar
  4. Clark, A. H.: The recent crinoids and their relation to sea and land. Geogrl J. 32, 602–607 (1908).Google Scholar
  5. —: A monograph of the existing crinoids. Bull. U.S. natn. Mus. 82 (1), Pt. 2. 1–795 (1921).Google Scholar
  6. —: A monograph of the existing crinoids. Bull. U.S. natn. Mus. 82 (1), Pt. 3. 1–816 (1931).Google Scholar
  7. —: A monograph of the existing crinoids. Bull. U.S. natn. Mus. 82 (1), Pt. 4b. 1–473 (1947).Google Scholar
  8. — and A. M. Clark: A monograph of the existing crinoids. Bull. U.S. natn. Mus. 82 (1), Pt. 5. 1–860 (1967).Google Scholar
  9. Clark, H. L.: The comatulids of Torres Strait: with special reference to their habits and reactions. Pap. Dep. mar. Biol. Carnegie Instn Wash. 8, 97–125 (1915).Google Scholar
  10. —: The habits and reactions of a comatulid, Tropiometra carinata. Pap. Dep. mar. Biol. Carnegie Instn Wash. 11, 113–119 (1917).Google Scholar
  11. Curl, H.: Primary production measurements in the north coastal waters of South America. Deep Sea Res. 7, 183–189 (1960).Google Scholar
  12. Doty, M. S. and M. Oguri: The island mass effect. J. Cons. perm. int. Explor. Mer 22, 33–37 (1956).Google Scholar
  13. Everest, F. H.: Midget Bentzel current speed tube for ecological investigations. Limnol. Oceanogr. 12, 179–180 (1967).Google Scholar
  14. Fell, H. B.: Ecology of crinoids. In: Physiology of Echinodermata, pp 49–62. Ed. by R. A. Boolootian. New York: Wiley Interscience 1966.Google Scholar
  15. Fricke, H. W.: Beiträge zur Biologie der Gorgonenhäupter Astrophyton muricatum (Lamarck) and Astroboa nuda (Lyman), 107 pp. Dissertation, Free University of Berlin 1968.Google Scholar
  16. Friedrich, H.: Marine biology, 474 pp. Seattle: University of Washington Press 1969.Google Scholar
  17. Gislén, T.: Echinoderm studies. Zool. Bidr. Upps. 9, 1–316 (1924).Google Scholar
  18. Hargraves, P. E., R. W. Brody and P. R. Burkholder: A study of phytoplankton in the Lesser Antilles region. Bull. mar. Sci. 20, 331–349 (1970).Google Scholar
  19. Heezen, B. C. and C. D. Hollister: The face of the deep 659 pp. New York: Oxford 1971.Google Scholar
  20. Hyman, L. H.: The invertebrates 4, Echinodermata, 763 pp. New York. McGraw-Hill 1955.Google Scholar
  21. Jones, M. L. and R. B. Manning: A two-ocean bouillabaisse can result if and when sea-level canal is dug. Smithsonian 2 (9), 12–21 (1971).Google Scholar
  22. Jørgensen, C. B.: Biology of suspension feeding. In: International series of pure and applied biol, Vol. 27. pp 1–357. Ed. by G. A. Kerkut. Oxford: Pergammon Press 1966.Google Scholar
  23. Lane, N. G.: Crinoids and reefs. In: Proceedings of the N. American Paleontological Convention, Part J, pp 1430–1443. Lawrence: Allen Press 1971.Google Scholar
  24. Magnus, D. B. E.: Der Federstern Heterometra savignyi im Roten Meer. Natur Mus., Frankf. 93, 355–394 (1963).Google Scholar
  25. —: Gezeitenströmung und Nahrungsfiltration bei Ophiuren und Crinoiden. Helgoländer wiss. Meeresunters. 10, 105–117 (1964).Google Scholar
  26. —: Ecological and ethological studies and experiments on the echinoderms of the Red Sea. Stud. trop. Oceanogr., Miami 5, 635–664 (1967).Google Scholar
  27. Meyer, D. L.: The collagenous nature of problematical ligaments in crinoids (Echinodermata). Mar. Biol. 9, 235–241 (1971).Google Scholar
  28. —: Ctenantedon, a new antedonid crinoid convergent with comasterids. Bull. mar. Sci. 22, 53–66 (1972).Google Scholar
  29. Distribution and living habits of comatulid crinoids near Discovery Bay, Jamaica; Bull. mar. Sci. (In press).Google Scholar
  30. Moore, R. C. and L. R. Laudon: Evolution and classification of Paleozoic crinoids. Spec. Pap. geol. Soc. Am. 46, 1–153 (1943).Google Scholar
  31. Mortensen, T.: Studies in the development of crinoids. Pap. Dep. mar. Biol. Carnegie Instn Wash. 16, 1–94 (1920).Google Scholar
  32. Nichols, D.: The histology and activities of the tube feet of Antedon bifida. Q. Jl microsc. Sci. 101, 105–117 (1960).Google Scholar
  33. —: Functional morphology of the water-vascular system. In: Physiology of Echinodermata, pp 219–244. Ed. by R. A. Boolootian, New York: Wiley Interscience 1966.Google Scholar
  34. Niskin, S. J.: A low cost bottom current velocity and direction recorder. Mar. Sci. Instrument. 3, 123–131 (1965).Google Scholar
  35. Pérès, J.-M.: Remarques générales sur un ensemble de quinze plongées effectuées avec le bathyscape F.N.R.S. III. Annls Inst. océanogr., Monaco 35, 259–285 (1958).Google Scholar
  36. —: Deux plongées au large du Japon avec le bathyscaphe francais F.N.R.S. III. Bull. Inst. océanogr. Monaco 56, 1–28 (1959).Google Scholar
  37. Reichensperger, A.: Über das Vorkommen von Drusen bei Crinoiden. Zool. Anz. 33, 363–367 (1908).Google Scholar
  38. Riedl, R.: Die Erscheinungen der Wasserbewegung und ihre Wirkung auf Sedentarier im mediterranen Felslitoral. Helgoländer wiss. Meeresunters. 10, 155–186 (1959).Google Scholar
  39. Rutman, J. and L. Fishelson: Food composition and feeding behavior of shallow-water crinoids at Eilat (Red Sea). Mar. Biol. 3, 46–57 (1969).Google Scholar
  40. Shear, W. A.: The evolution of social phenomena in spiders. Bull. Br. arachnol. Soc. 1, 65–76 (1970).Google Scholar
  41. Turpaeva, E. P.: Food interrelationships of dominant species in marine benthic biocoenoses. In: Marine biology, pp 137–148. Ed. by B. N. Nikitin. Washington: American Institute of Biological Science 1959. [Dokl. (Proc.) Acad. Sci. U.S.S.R. 20, 171–185 (1957)].Google Scholar
  42. Webster, G. D.: Bibliography and index of Paleozoic crinoids, 1942–1968. Mem. geol. Soc. Am. 137 (In press).Google Scholar
  43. Wüst, G.: Stratification and circulation in the Antillean-Caribbean basins, 201 pp. New York: Colombia 1964.Google Scholar
  44. Zoppi de Roa, E.: Contribucion al estudio de los equinodermos de Venezuela. Acta biol. venez. 5, 267–333 (1967).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • D. L. Meyer
    • 1
  1. 1.Smithsonian Tropical Research InstituteBalboa, Canal Zone

Personalised recommendations