Skip to main content
Log in

Induced triploidy in the soft-shelled clam Mya arenaria: energetic implications

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Given that triploid adult bivalves reportedly grow larger and faster than their diploid siblings, such differences should be traceable to variation in energy allocation. In one proposed mechanism, retarded gametogenesis found in triploid adults may allow them more energy for somatic growth. Another hypothesis states that triploids are more heterozygous; increased heterozygosity has been positively correlated with enhanced growth. Juvenile soft-shelled clams, Mya arenaria, were treated with cytochalasin B to induce triploidy and examined with respect to components of a balanced energy equation (C=P+R+E). The variables measured were oxygen uptake (V o 2), filtration rate (FR), dry tissue weight, shell length, shell height and shell inflation. Energy budgets were constructed and diploid and triploid groups compared. Few significant differences were found between diploid and triploid juvenile clams with respect to energy budget components. However, at seven loci assayed electrophoretically the triploid individuals were nearly twice as heterozygous as their diploid siblings. Moreover, tripoloid variances were less than diploid variances for every variable measured. Increased heterozygosity has been correlated with the decreased variance of morphological parameters. This study is believed to be the first to show decreased variance of physiological properties as well as morphological characters. Overall the data clearly indicate that energy allocation in juvenile M. arenaria is not related to ploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adamkiewicz, L., Taub, S. R., Wall, J. R. (1984). Genetics of the clam Mercenaria mercenaria II. Size and genotype. Malacologia 25: 525–533

    Google Scholar 

  • Aebersold, P. B., Winans, G. A., Teel, D. J., Milner, G. B., Utter, F. M. (1988). Manual for starch gel electrophoresis: A method for the detection of genetic variation. NOAA Technical Report, Sand Point, Washington (in press)

  • Allen, J. A. (1962). Preliminary experiments on the feeding and excretion of bivalves using Phaeodactylum labelled with 32P. J. mar. Biol. Ass. U.K. 42: 609–623

    Google Scholar 

  • Allen, S. K. Jr., Downing, S. L. (1986). Performance of triploid Pacific oysters, Crassostrea gigas. I. Survival, growth, glycogen content and sexual maturation in yearlings. J. exp. mar. Biol. Ecol. 102: 197–208

    Google Scholar 

  • Allen, S. K. Jr., Gagnon, P. S., Hidu, H. (1982). Induced triploidy in the soft-shell clam: cytogenetic and allozymic confirmation. J. of Hered. 73: 421–428

    Google Scholar 

  • Allen, S. K. Jr., Hidu, H., Stanley, J. G. (1986). Abnormal gametogenesis and sex ratio in triploid soft-shell clams (Mya arenaria). Biol. Bull. mar. biol. Lab., Woods Hole 170: 198–210

    Google Scholar 

  • Bayne, B. L. (ed.) (1976). Marine mussels: their ecology and physiology. Cambridge University Press, New York

    Google Scholar 

  • Bayne, B. L., Newell, R. C. (1983). Physiological energetics of marine molluscs. In: Saleuddin, A. S. M., Wilbur, K. M. (eds.) The Mollusca Vol. 4. Academic Press, New York, p. 407–515

    Google Scholar 

  • Beaumont, A. R., Beveridge, C. M., Budd, M. D. (1983). Selection and heterozygosity within single families of the mussel Mytilus edulis (L.). Mar. Biol. Lett. 4: 151–161

    Google Scholar 

  • Beaumont, A. R., Gosling, E. M., Beveridge, C. M., Budd, M. D., Burnell, G. M. (1985). Studies on heterozygosity and size in the scallop Pecten maximus. In: Gibbs, P. E. (ed.) Proc. 19th Eur. Mar. Biol. Symp. Cambridge University Press, New York, p. 443–445

    Google Scholar 

  • Berry, P. F., Schleyer, M. H. (1983). The brown mussel Perna perna on the Natal coast, South Africa: utilization of available food and energy budget. Mar. Ecol. Prog. Ser. 13: 201–210

    Google Scholar 

  • Boyer, S. H., Fainer, D. C., Watson-Williams, E. J. (1963). lactate dehydrogenase variant from human blood: Evidence for molecular subunits. Science, N.Y. 141: 642–643

    Google Scholar 

  • Chaiton, J. A., Allen, S. K. Jr. (1985). Early detection of triploidy in the larvae of the Pacific oyster, Crassostrea gigas, by flow cytometry. Aquaculture 48: 35–43

    Google Scholar 

  • Clayton, J. W., Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Bd. Can. 29: 1169–1173

    Google Scholar 

  • Conover, R. J. (1966). Assimilation of organic matter by zooplankton. Limnol. and Oceanogr. 11: 338–354

    Google Scholar 

  • Conover, R. J. (1978). Transformation of organic matter. In: Kinne, O. (ed.) Marine Ecology. Vol. IV. Wiley-Interscience, New York, p. 221–499

    Google Scholar 

  • Conrad, M. (1983). Adaptability: The significance of variability from molecule to ecosystem. Plenum Press, New York

    Google Scholar 

  • Coughlan, J. (1969). The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2: 356–358

    Google Scholar 

  • Crisp, D. J. (1971). Energy flow measurements. In: Holmes, N. A., McIntyre, A. D. (eds.) Methods for the study of marine benthos. IBP Handbook No. 16. Blackwell Scientific Publications, Oxford, p. 197–279

    Google Scholar 

  • Dame, R. F. (1972). The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crassostrea virginica. Mar. Biol. 17: 243–250

    Google Scholar 

  • Defendi, V., Stoker, M. G. P. (1973). General polyploidy produced by cytochalasin B. Nature, Lond. 242: 24–26

    Google Scholar 

  • Eanes, W. F. (1978). Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature, Lond. 276: 263–264

    Google Scholar 

  • Ehinger, R. E. (1978). Seasonal energy balance of the sea scallop, Placopecten magellanicus, from Narragansett Bay. M.S. thesis, University of Rhode Island

  • Epifanio, C. E., Ewart, J. (1978). Maximum ration of four algal diets for the oyster Crassostrea virginica Gmelin. Aquaculture 11: 13–29

    Google Scholar 

  • Foltz, D. W., Zouros, E. (1984). Enzyme heterozygosity in the scallop Placopecten magellanicus (Gmelin) in relation to age and size. Mar. Biol. Lett. 5: 255–263

    Google Scholar 

  • Fujio, Y. (1982). A correlation of heterozygosity with growth rate in the Pacific oyster, Crassostrea gigas. Tohuku J. agr. Res. 33: 66–75

    Google Scholar 

  • Gabbott, P. A. (1975). Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In: Barnes, H. (ed.) Proc. Ninth Euro. mar. biol. Symp. Cambridge University Press, New York, p. 191–211

    Google Scholar 

  • Gaffney, P. M., Scott, T. M. (1984). Genetic heterozygosity and production traits in natural and hatchery populations of bivalves. Aquaculture 42: 289–302

    Google Scholar 

  • Garton, D. W., Koehn, R. K., Scott, T. M. (1984). Multiple locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population. Genetics 108: 445–455

    Google Scholar 

  • Gerdes, D. (1983). The Pacific oyster Crassostrea gigas part I. Feeding behavior of larvae and adults. Aquaculture 31: 195–219

    Google Scholar 

  • Goldberg, R. (1985). Growth and energetics of the surf clam, Spisula solidissima, (Dillwyn) at different algal concentrations. M.S. thesis, Southern Connecticut State University

  • Green, R. H., Singh, S. M., Hicks, B., McCuaig, J. M. (1983). An arctic intertidal population of Macoma balthica (Mollusca, Pelecypoda): genotypic and phenotypic components of population structure. Can. J. Fish. Aquat. Sci. 40: 1360–1371

    Google Scholar 

  • Griffiths, C. L., King, J. A. (1979). Energy expended on growth and gonad output in the ribbed mussel Aulacomya ater. Mar. Biol. 53: 217–222

    Google Scholar 

  • Hamburger, K., Mohlenberg, F., Randlov, A., Riisgard, H. U. (1983). Size, oxygen consumption and growth in the mussel Mytilus edulis. Mar. Biol. 75: 303–306

    Google Scholar 

  • Hughes, R. N. (1970). An energy budget for a tidal-flat population of the bivalve Scrobicularia plana (Da Costa). J. Anim. Ecol. 39: 357–379

    Google Scholar 

  • Jorgensen, C. B. (1976). Growth efficiencies and factors controlling size in some mytilid bivalves, especially Mytilus edulis L.: Review and interpretation. Ophelia 15: 175–192

    Google Scholar 

  • Koehn, R. K., Gaffney, P. M. (1984). Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82: 1–7

    Google Scholar 

  • Koehn, R. K., Shumway, S. E. (1982). A genetic/physiological explanation for differential growth rate among individuals of the American oyster, Crassostrea virginica (Gmelin). Mar. Biol. Lett. 3: 35–42

    Google Scholar 

  • Langefoss, C. M., Maurer, D. (1975). Energy partitioning in the American oyster, Crassostrea virginica (Gmelin). Proc. nat. Shellfish Assoc. 65: 20–25

    Google Scholar 

  • Laughlin, R. B., Wofford, H. W., Neff, J. M. (1979). Simple potentiometric method for the rapid determination of respiration rates of small aquatic organisms. Aquaculture 16: 77–82

    Google Scholar 

  • Lerner, I. M. (1954). Genetic homeostasis. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Longo, F. J. (1972). The effects of cytochalasin B on the events of fertilization in the surf clam. Polar body formation. J. exp. Zool. 182: 321–344

    Google Scholar 

  • McAndrew, B. J., Ward, R. D., Beardmore, J. A. (1982). Lack of relationship between morphological variance and enzyme heterozygosity in the plaice, Pleuronectes platessa. Heredity 48: 177–125

    Google Scholar 

  • Mitton, J. B. (1978). Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature, Lond. 273: 661–662

    Google Scholar 

  • Mitton, J. B., Grant, M. C. (1984). Associations among protein heterozygosity, growth rate, and development homeostasis. Annu. Rev. Ecol. Syst. 15: 479–499

    Google Scholar 

  • Mitton, J. B., Koehn, R. K. (1985). Shell shape variation in the blue mussel, Mytilus edulis L., and its association with enzyme heterozygosity. J. exp. mar. Biol. Ecol. 90: 73–80

    Google Scholar 

  • Newell, R. C. (1979). Biology of intertidal animals. Marine Ecological Surveys, Faversham, Kent

    Google Scholar 

  • Newell, R. I. E. (1983). Molluscan bioenergetics — a synopsis. In: Pruder, G. D., Langdon, C., Conklin, D. (eds.) Proc. of the Second International Conf. on Aquaculture and Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition. Louisiana State University, Louisiana, p. 252–271

    Google Scholar 

  • Nielsen, M. V. (1985). Increase in shell length as a measure of production and ingestion of Mytilus edulis L. J. exp. mar. Biol. Ecol. 88: 101–108

    Google Scholar 

  • Rodhouse, P. G., Gaffney, P. M. (1984). Effect of heterozygosity on metabolism during starvation in the American oyster, Crassostrea virginica. Mar. Biol. 80: 179–187

    Google Scholar 

  • Rodhouse, P. G., McDonald, J. H., Newell, R. I. E., Koehn, R. K. (1986). Gamete production, somatic growth and multiple-locus enzyme heterozygosity in Mytilus edulis. Mar. Biol. 90: 209–214

    Google Scholar 

  • SAS User's Guide. Statistics. SAS Institute Inc., Cary, North Carolina, p. 433–506

  • Shumway, S. E., Newell, R. C. (1984). Energy resource allocation in Mulinia lateralis (Say), an opportunistic bivalve from shallow water sediments. Ophelia 23: 101–118

    Google Scholar 

  • Singh, S. M., Zouros, E. (1978). Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution 32 (2): 342–353

    Google Scholar 

  • Stanley, J. G., Allen, S. K. Jr., Hidu, H. (1981). Polyploidy induced in the American oyster, Crassostrea virginica with cytochalasin B. Aquaculture 23: 1–10

    Google Scholar 

  • Stanley, J. G., Hidu, H., Allen, S. K. Jr. (1984). Growth of American oysters increased by polyploidy induced by blocking Meiosis I but not Meiosis II. Aquaculture 37: 147–155

    Google Scholar 

  • Tabarini, C. L. (1984). Induced triploidy in the bay scallop, Argopecten irradians, and its effect on growth and gametogenesis. Aquaculture 42: 151–160

    Google Scholar 

  • Thayer, G. W., Schaaf, W. E., Angelovic, J. W., LaCroix, M. W. (1973). Caloric measurements of some estuarine organisms. Fish. Bull. U.S. 71: 289–296

    Google Scholar 

  • Vahl, O. (1973). Pumping and oxygen consumption rates of Mytilus edulis L. of different sizes. Ophelia 12: 45–52

    Google Scholar 

  • Wilkins, N. P. (1978). Length-correlated changes in heterozygosity at an enzyme locus in the scallop (Pecten maximus L.). Anim. Blood Grps. biochem. Genet. 9: 69–77

    Google Scholar 

  • Wolf, U., Engel, W., Faust, J. (1970). The mechanism of diploidization in vertebrate evolution: Coexistence of tetrasomic and disomic gene loci for the isocitrate dehydrogenases in trout (Salmo irideus). Humangenetik 9: 150–156

    Google Scholar 

  • Zar, J. H. (1974). Biostatistical Analysis. Prentice-Hall, Inc. New Jersey

    Google Scholar 

  • Zouros, E., Singh, S. M., Miles, H. E. (1980). Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution 34 (5): 856–858

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. P. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, K.M., Shumway, S.E., Allen, S.K. et al. Induced triploidy in the soft-shelled clam Mya arenaria: energetic implications. Marine Biology 98, 519–528 (1988). https://doi.org/10.1007/BF00391543

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391543

Keywords

Navigation