Advertisement

Marine Biology

, Volume 101, Issue 2, pp 273–283 | Cite as

Biomass and production in polar planktonic and sea ice microbial communities: a comparative study

  • R. B. Rivkin
  • M. Putt
  • S. P. Alexander
  • D. Meritt
  • L. Gaudet
Article

Abstract

Algal and bacterial biomass and production were measured in the plankton, platelet ice and congelation ice communities at one station in McMurdo Sound, Antarctica during September and October 1986. Bacterial abundances and particulate organic carbon and nitrogen were 10 to 100 times greater in the plankton than in the sea ice, whereas the chlorophyll a concentrations in the plankton and sea ice microbial communities (SIMCO) were similar Rates of both light-limited and light-saturated photosynthesis and daily primary production were 2 to 6 times greater in the plankton than in the SIMCO. Bacterial growth rates ranges from 0.7 to 1.5 d-1 in all three communities; however, because of the greater bacterial biomass in the plankton, bacterial production was 15 to 20 times higher there than in the SIMCO. These results suggest that during the early austral spring, planktonic production contributes significantly to total production in ice-covered environments.

Keywords

Biomass Chlorophyll Photosynthesis Bacterial Growth Total Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Azam, F., Ammerman, J. W. (1984). Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: Microenvironmental considerations. In: Fasham, M. J. R. (ed.) Flows of energy and materials in marine ecosystems. Plenum Press, New York, p. 345–360Google Scholar
  2. Barry, J. P., Dayton, P. K. (1988). Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biol. 8: 367–376Google Scholar
  3. Bunt, J. S. (1964). Primary productivity under sea ice in Antarctic water. Antarct. Res. Ser. 1: 13–31Google Scholar
  4. Bunt, J. S., Lee, C. C. (1970). Seasonal primary production in Antarctic sea ice at McMurdo Sound 1967. J. mar. Res. 28: 305–320Google Scholar
  5. Clark, D. B., Ackley, S. F. (1984). Sea ice structure and biological activity in the Antarctic marginal ice zone. J. Geophys. Res. 89: 2087–2095Google Scholar
  6. Cole, J. J., Findlay, S., Pace, M. L. (1988). Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10Google Scholar
  7. Cota, G. F. (1985). Photoadaptation of high Arctic ice algae. Nature (London) 315: 219–222Google Scholar
  8. Cota, G. F., Prinsenberg, S. J., Bennett, E. B., Loder, J. W., Lewis, M. R., Anning, J. L., Watson, N. H. F., Harris, L. R. (1987). Nutrient fluxes during extended blooms of Arctic ice algae. J. Geophys. Res. 92: 1951–1962Google Scholar
  9. Dayton, P. K., Oliver, J. S. (1977). Antarctic soft bottom benthos in oligotrophic and eutrophic environments. Science, N.Y. 197: 55–58Google Scholar
  10. DeLaca, T. E. (1982). Use of dissolved amino acids by the foraminifer Notodendrodes antarctickos. Am. Zool. 22: 683–690Google Scholar
  11. Ducklow, H. H., Hill, S. M. (1985a). The growth of heterotrophic bacteria in the surface waters of warm core rings. Limnol. Oceanogr. 30: 239–259Google Scholar
  12. Ducklow, H. H., Hill, S. M. (1985b). Tritiated thymidine incorporation and growth of heterotrophic bacteria in warm core rings. Limnol. Oceanogr. 30: 260–272Google Scholar
  13. Falkowski, P. G. (1983). Light-shade adaptation and vertical mixing of marine phytoplankton: A comparative field study. J. mar. Res. 41: 215–237Google Scholar
  14. Falkowski, P. G., Wirick, D. C. (1981). A simulation model of the effects of vertical mixing on primary productivity. Mar. Biol. 65: 69–75Google Scholar
  15. Fuhrman, J. A., Ammerman, J. W., Azam, F. (1980). Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207Google Scholar
  16. Fuhrman, J. A., Azam, F. (1980). Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. environ. Microbiol. 39: 1085–1095Google Scholar
  17. Fuhrman, J. A., Azam, F. (1982). Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120Google Scholar
  18. Gallegos, C. L., Platt, T. (1981). Photosynthesis measurements on natural populations of phytoplankton: Numerical analysis. Can. Bull. Fish. aquat. Sciences 210: 103–112Google Scholar
  19. Garrison, D. L., Buck, K. R. (1986). Organism losses during ice melting: A serious bias in sea ice community studies. Polar Biol. 6: 237–239Google Scholar
  20. Garrison, D. L., Sullivan, C. W., Ackley, S. F. (1986). Sea ice microbial communities in Antarctica. BioSci. 36: 243–249Google Scholar
  21. Gosselin, M., Demers, S., Ingram, R. J. (1985). Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Can. J. Fish. aquat. Science 42: 999–1006Google Scholar
  22. Grossi, S. M., Kottmeier, S. T., Moe, R. L., Taylor, G. T., Sullivan, C. W. (1987). Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Mar. Ecol. Prog. Ser. 35: 153–164Google Scholar
  23. Grossi, S. M., Kottmeier, S. T., Sullivan, C. W. (1984). Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria, McMurdo Sound, Antarctica. Microb. Ecol. 10: 231–242Google Scholar
  24. Grossi, S. M., Sullivan, C. W. (1985). Sea ice microbial communities. V. The vertical zonation of diatoms in the Antarctic fast ice community. J. Phycol. 21: 401–409Google Scholar
  25. Hanson, R. B., Lowery, H. K., Shafer, D., Sorocco, R., Pope, D. H. (1983). Microbes in Antarctic waters of the Drake Passage: Vertical patterns of substrate uptake, productivity and biomass in January 1980. Polar Biol. 2: 179–188Google Scholar
  26. Hanson, R. B., Shafer, D., Ryan, T., Pope, D. H., Lowery, H. K. (1983b). Bacterioplankton in Antarctic ocean waters during late austral winter: Abundance, frequency of dividing cells, and estimates of production. Appl. environ. Microbiol. 45: 1622–1632Google Scholar
  27. Harris, G. P. (1978). Photosynthesis, productivity and growth. The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. Erbeb. Limnol. 10: 1–171Google Scholar
  28. Hobbie, J. E., Daley, R., Jasper, S. (1977). Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. environ. Microbiol. 33: 1225–1228Google Scholar
  29. Hollibaugh, J. T. (1988). Limitations of the [3H] thymidine method for estimating bacterial productivity due to thymidine metabolism. Mar. Ecol. Prog. Ser. 43: 19–30Google Scholar
  30. Holm-Hansen, O. (1985). Nutrient cycles in Antarctic marine ecosystems. In: Seigfried, W. R., Condy, P. R., Laws, R. M. (eds.). Antarctic nutrient cycles and food webs. Springer-Verlag, New York, p. 6–11Google Scholar
  31. Horner, R. A., Schrader, G. C. (1982). Relative contribution of ice algae, phytoplankton and benthic algae to primary production in nearshore regions of the Beaufort Sea. Arctic 35: 485–503Google Scholar
  32. Jassby, A. D., Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547Google Scholar
  33. Jerlov, N. G. (1976). Marine optics. Elsevier Press, New YorkGoogle Scholar
  34. Karl, D. M. (1986). Determination of in situ microbial biomass, viability, metabolism, and growth. In: Poindexter, J. S., Leadbetter, E. R. (eds.). Bacteria in nature. Vol 2. Plenum Press, New York, p. 85–176Google Scholar
  35. Kirchman, D. L., Ducklow, H. W., Mitchell, R. (1982). Estimates of bacterial growth from changes in uptake rates and biomass. Appl. environ. Microbiol. 44: 1296–1307Google Scholar
  36. Kobayashi, Y., Maudsley, D. V. (1974). Biological applications of liquid scintillation counting. Academic Press, New YorkGoogle Scholar
  37. Kottmeier, S. T., Grossi, S. M., Sullivan, C. W. (1987). Sea ice microbial communities. VIII. Bacterial production in annual sea ice of McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 35: 175–186Google Scholar
  38. Kottmeier, S., Sullivan, C. W. (1987). Late winter production and bacterial production in sea ice and seawater west of the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 36: 287–298Google Scholar
  39. Kozlyaninov, M. V., Pelevin, V. N. (1966). On the application of a one-dimensional approximation in the investigation of the propagation of optical radiation in the sea. U.S. Dept. Comm., Joint Publ. Ser., Rept., 36: 45–63Google Scholar
  40. Lessard, E. J., Rivkin, R. B. (1986). Nutrition of microzooplankton and macrozooplankton from McMurdo Sound. Antarct. J.U.S. 21: 187–188Google Scholar
  41. Lewis, E. L., Perkins, R. G. (1985). The winter oceanography of McMurdo Sound. Antarct. Res. Ser. 43: 145–165Google Scholar
  42. Li, W. K. (1984). Microbial uptake of radiolabelled substrates: estimates of growth rates from time course measurements. Appl. environ. Microbiol. 47: 184–192Google Scholar
  43. Littlepage, J. L. (1965). Oceanographic investigations in McMurdo Sound, Antarctica. Antarctic Res. Ser. 5: 1–37Google Scholar
  44. Maestrini, S. Y., Rochet, M., Legendre, L., Demers, S. (1986). Nutrient limitation of the bottom-ice microalgal biomass (southeastern Hudson Bay, Canadian Arctic). Limnol. Oceanogr. 31: 969–982Google Scholar
  45. Maykut, G. A. (1985). The ice environment. In: Horner, R. A. (ed.) Sea ice biota. CRC Press, Boca Raton, p. 21–82Google Scholar
  46. Meguro, H., Kuniyuki, I., Fukushima, H. (1967). Ice flora (bottom type); a mechanism of primary production in the polar sea and growth of diatoms in sea ice. Aretic 20: 114–133Google Scholar
  47. Mellor, G. L., McPhee, M. G., Steele, M. (1986). Ice-seawater turbulent boundary layer interaction with melting or freezing. J. phys. Oceanogr. 16: 1829–1946Google Scholar
  48. Miller, M. A., Krempin, D. W., Manahan, D. T., Sullivan, C. W. (1984). Growth rates, distribution and abundance of bacteria in the ice-edge zone of the Weddell and Scotia Seas, Antarctica. Antarct. J.U.S. 19: 103–105Google Scholar
  49. Munro, H. N., Fleck, A. (1966). Determination of nucleic acids. Meth. biochem. Analysis 32: 393–432Google Scholar
  50. Palmisano, A. C., Kottmeier, S. T., Moe, R. L., Sullivan, C. W. (1985a). Sea ice microbial communities. IV. The effects of light perturbation on microalgae at the ice-seawater interface in McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 21: 37–45Google Scholar
  51. Palmisano, A. C., SooHoo, J. B., SooHoo, S. L., Kottmeier, S. T., Craft, L. L., Sullivan, C. W. (1986). Photoadaptation in Phaeocystis pouchetii advected beneath annual sea ice in McMurdo Sound, Antarctica. J. Plankton Res. 8: 891–906Google Scholar
  52. Palmisano, A. C., SooHoo, J. B., Sullivan, C. W. (1985b). Photosynthesis-irradiance relationships in sea ice microalgae from McMurdo Sound, Antarctica. J. Phycol. 21: 341–346Google Scholar
  53. Palmisano, A. C., Sullivan, C. W. (1983). Sea ice microbial communities (SIMCO) 1. Distribution, abundance, and primary production of ice microalgae in McMurdo Sound, Antarctica in 1980. Polar Biol. 2: 171–177Google Scholar
  54. Richardson, K., Beardall, J., Raven, J. A. (1983). Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157–191Google Scholar
  55. Rivkin, R. B., Bosch, I., Pearse, J. S., Lessard, E. J. (1986). Bacterivory: a novel feeding mode for asteroid larvae. Science, N.Y. 233: 1311–1314Google Scholar
  56. Rivkin, R. B., Lessard, E. J. (1986). Photoadaptation of photosynthetic carbon uptake by solitary radiolaria: comparison with free living phytoplankton. Deep Sea Res. 33: 1025–1038Google Scholar
  57. Rivkin, R. B., Putt, M. (1987a). Photosynthesis and cell division by ice algae. J. Phycol. 23: 223–229Google Scholar
  58. Rivkin, R. B., Putt, M. (1987b). Heterotrophy and photoheterotrophy by Antarctic microalgae: light dependent incorporation of amino acids and glucose. J. Phycol. 23: 442–452Google Scholar
  59. Rivkin, R. B., Seliger, H. H., Swift, E., Biggley, W. H. (1982). Light-shade adaptations by the oceanic dinoflagellates Pyrocystic nictiluca and P. fusiformis. Mar. Biol. 68: 181–191Google Scholar
  60. Rivkin, R. B., Voytek, M. (1987). Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica. 1. Species-specific and community responses to reduced irradiances. Limnol. Oceanogr. 32: 249–259Google Scholar
  61. Robertson, D. H., Soohoo, J. B., Lizotte, M. P., Sullivan, C. W. (1987). Detritus is a significant component of the water column particulate material from the Weddel Sea marginal ice-edge zone in autumn. EOS 68: 1765Google Scholar
  62. Sakshaug, E., Holm-Hansen, O. (1986). Photoadaptation in Antarctica phytoplankton: variations in growth rate, chemical composition and P versus I curves. J. Plankton Res. 8: 459–473Google Scholar
  63. Scavia, D., Laird, G. A. (1987). Bacterioplankton in Lake Michigan: Dynamics, control and significance to carbon flux. Limnol. Oceanogr. 32: 1017–1033Google Scholar
  64. Servais, P., Billen, G., Rego, J. V. (1985). Rate of bacterial mortality in aquatic environments. Appl. environ. Microbiol. 49: 1448–1454Google Scholar
  65. Smith, R. E. H., Clement, P., Cota, G. F., Li, W. K. W. (1987). Intracellular photosynthate allocation and the control of Arctic marine ice algal populations. J. Phycol. 23: 124–132Google Scholar
  66. Smith, W. O. (1987). Phytoplankton dynamics in marginal ice zones. Oceanogr. mar. Biol. A. Rev. 25: 11–38Google Scholar
  67. Smith, W. O., Nelson, D. M. (1986). Importance of ice edge phytoplankton production in the southern ocean. BioSci. 36: 251–257Google Scholar
  68. Sullivan, C. W., Palmisano, A. C. (1984). Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl. environ. Microbiol. 47: 788–795Google Scholar
  69. Sullivan, C. W., Palmisano, A. C., Kottmeier, S., Grossi, S. M., Moe, R. (1985). The influence of light on growth and development of the sea ice microbial community of McMurdo Sound. In: Seigfried, W. R., Condy, P. R., Laws, R. M. (eds.). Antarctic nutrient cycles and food webs. Springer-Verlag, New York, p. 78–83Google Scholar
  70. Tilzer, M. M., Bodungen, B. von, Smetacek, V. (1985). Light-dependence of phytoplankton photosynthesis in the Antarctic ocean: Implications for regulating productivity. In: Seigfried, W. R., Condy, P. R., Laws, R. M. (eds.). Antarctic nutrient cycles and food webs. Springer-Verlag, New York, p. 60–69Google Scholar
  71. Tilzer, M. M., Dubinsky, Z. (1987). Effects of temperature and daylength on the mass balance of Antarctic phytoplankton. Polar Biol. 7: 35–42Google Scholar
  72. Tressler, W. L., Ommundsen, A. M. (1962). Seasonal oceanographic studies in McMudo Sound, Antarctica. U.S. Navy Hydrographic Office, Washington DCGoogle Scholar
  73. Wainright, S. C. (1987). Stimulation of heterotrophic microplankton production by resuspended marine sediments. Science, N.Y. 238: 1710–1712Google Scholar
  74. Williams, P. J. LeB. (1981). Incorporation of microheterotrophic processes into the classical paradigm of planktonic food webs. Kieler Meeresforsch., Sonderh. 5: 1–28Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • R. B. Rivkin
    • 1
  • M. Putt
    • 2
  • S. P. Alexander
    • 3
  • D. Meritt
    • 1
  • L. Gaudet
    • 1
  1. 1.Horn Point Environmental LaboratoriesUniversity of MarylandCambridgeUSA
  2. 2.Department of Biological SciencesUniversity of CaliforniaSanta BarbaraUSA
  3. 3.A-002, Marine Biology Research Division, Scripps Institution of OceanographyUniversity of CaliforniaLa JollaUSA

Personalised recommendations