Advertisement

Marine Biology

, Volume 101, Issue 2, pp 205–209 | Cite as

X-ray diffraction study of the first larval shell of Ostrea edulis

  • D. Medakovié
  • M. Hrs-Brenko
  • S. Popovié
  • B. Gržeta
Article

Abstract

X-ray powder diffraction was used to study the calcification of the first larval shell of Ostrea edulis (sampled in Limski kanal, Istria, Adriatic Sea in April 1986) from the trochophore stage to the veliger larvae (prodissoconch I), and development of the latter up to several days postfertilization (prodissoconch II). In the first stage, only the amorphous component is present (periostracum and organic matrix). The beginning of shell formation is manifested by the appearance of calcite (up to 1–4% of the total vol.) and then aragonite (2 to 7%). In a later stage of the veliger larvae the fraction of calcite decreases, as well as the fraction of the amorphous component, while the fraction of aragonite rapidly increases. In the prodissoconch II stage, aragonite is dominant, with a very small amount of amorphous component and traces of calcite. In contrast, the valves of the adult O. edulis are composed mainly of calcite, with traces of aragonite.

Keywords

Calcite Powder Diffraction Diffraction Study Aragonite Organic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Carriker, M. R., Palmer, R. E. (1979). Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the oyster Crassostrea virginica. Proc. Natl Shellfish. Assoc. 69: 103–128Google Scholar
  2. Carriker, M. R., Palmer, R. E., Prezant, R. S. (1980). Functional ultramorphology of the dissoconch valves of the oyster Crassostrea virginica. Proc. Natl Shellfish. Assoc. 70: 139–183Google Scholar
  3. Hori, J. (1933). On the development of the olympia oyster, Ostrea lurida Carpenter, transplanted from United States to Japan. Bull. Jap. Soc. Scient. Fish. 1: 269–276Google Scholar
  4. Horst, R. (1883–1884). The development of the oyster (Ostrea edulis L.) (Translation from Dutch by Herman Jacobson). United States Commission of Fish and Fisheries. Report of the Commissioner for 1884, part 12 (1886), p. 891–910Google Scholar
  5. Hrs-Brenko, M. (1980). The settlement of mussels and oysters larvae in the northern Adriatic Sea. Nova Thalassia 4: 67–85Google Scholar
  6. Kniprath, E. (1979). The functional morphology of the embryonic shell-gland in the conchiferous molluscs. Malacologia 18: 549–552Google Scholar
  7. Korringa, P. (1940). Experiments and observations on swarming, pelagic life and setting in the European flat oyster, Ostrea edulis. L. Archs néerl. Zool. 5: 1–249Google Scholar
  8. LaBarbera, M. (1974). Calcification of the first larval shell of Tridacna squamosa (Tridacnidae, Bivalvia). Mar. Biol. 25: 233–238Google Scholar
  9. Loosanoff, V. L., Davis, H. C. (1963). Rearing of bivalve molluses. In: Russell, F. S. (ed.). Advances in Marine Biology 1. Academic Press, London, p 2–136Google Scholar
  10. Marteil, L. (1976). Le conchyculture française. Rev. Trav. Inst. Pêches marit. 40: 153–346Google Scholar
  11. Orton, J. H. (1936). Observations and experiments on sex-change in the European oyster (Ostrea edulis). Part V. A simultaneous study of spawning in 1927 in two distinct geographical localities. Mém. Mus. Roy. Hist. Nat. Belg. Ser. 2, Fasc. 3: 997–1056Google Scholar
  12. Palmer, R. E., Carriker, M. R. (1979). Effects of cultural conditions on morphology of the shell of the oyster Crassostrea virginica. Proc. Natl Shelllfish. Assoc. 69: 58–72Google Scholar
  13. Popovié, S., Gržeta, B. (1979) The doping method in quantitative X-ray diffraction phase analysis. J. Appl. Crystallogr. 12: 205–208Google Scholar
  14. Popović, S., Gržeta, B., Balić-Žunié T. (1983). The doping method in quantitative X-ray diffraction phase analysis. Addendum. J. Appl. Crystallogr. 16: 505–507Google Scholar
  15. Rees, C. B. (1950). The interpretation and classification of lamellibranch larvae. Hull Bull. mar. Ecol. 3: 73–104Google Scholar
  16. Stenzel, H. B. (1964). Oysters: Composition of the larval shell. Science, N.Y. 145: 155–156Google Scholar
  17. Waller, T. R. (1981). Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linne. Smithson. Contr. Zool. 328: 1–70Google Scholar
  18. Walne, P. R. (1974). Culture of bivalve mollusca. 50 years experience at Conwy. Fishing News (Books) The Whitefriars Press Ltd, London and TonbridgeGoogle Scholar
  19. Wilbur, K. M. (1964). Shell formation and regeration. pp 243–282. In: Wilbur, K. M., Yonge, C. M. (eds.). Physiology of Mollusca 1. Academic Press, New YorkGoogle Scholar
  20. Wilbur, K. M., Saleuddin, A. S. M. (1983). Shell formation. In: Saleuddin, A. S. M., Wilbur, K. M. (eds.). The Mollusca 4, Physiology Part 1. Academic Press, New York, p. 235–287Google Scholar
  21. Yonge, C. M. (1960). Oysters. Collins Clear-Type Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. Medakovié
    • 1
  • M. Hrs-Brenko
    • 1
  • S. Popovié
    • 2
    • 3
  • B. Gržeta
    • 2
  1. 1.Center for Marine ResearchRuđer Boškovié InstituteRovinjCroatia, Yugoslavia
  2. 2.Materials Science and Electronics DepartmentRuđer Bošković InstituteZagrebCroatia, Yugoslavia
  3. 3.Faculty of Science, Department of PhysicsUniversity of ZagrebZagrebCroatia, Yugoslavia

Personalised recommendations