Advertisement

Marine Biology

, Volume 101, Issue 2, pp 143–151 | Cite as

Reproductive risk: high mortality associated with spawning by horseshoe crabs (Limulus polyphemus) in Delaware Bay, USA

  • M. L. Botton
  • R. E. Loveland
Article

Abstract

It has been presumed that intertidal spawning by Limulus polyphemus minimizes the loss of egges to subtidal predators; however, this strategy involves considerable risks. Massive beach strandings of adults accompany seasonal spawning migrations of crabs along Cape May in Delaware Bay, (USA). At least 190000 horseshoe crabs, approximating 10% of the adult population, died from beach stranding along the New Jersey shore of Delaware Bay during the 1986 (May to June) spawning season. Abnormalities of the telson (which is used in righting behavior) were significantly more common among stranded crabs than among individuals actively spawning on the intertidal beach. The number of stranded crabs per day was not correlated with tidal height or environmental variables (wind speed, wave height) which characterized the conditions at spawning. A complex suite of factors, including the size of the available spawning population, tidal and weather conditions, and beach slope, influence the number stranded during the breeding season. Horseshoe crab stranding results in a large loss of gravid females from the population, and may represent a major input of organic matter to intertidal sandy beaches in certain regions of Delaware Bay.

Keywords

Migration Wind Speed Beach Environmental Variable Wave Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bang, F. B. (1979). Ontogeny and phylogeny of response to gramnegative endotoxins among the marine invertebrates. In: Cohen, E. (ed.). Biomedical applications of the horseshoe crab (Limulidae). Alan R. Liss, New York, p. 109–123Google Scholar
  2. Barlow, R. B., Jr., Powers, M. K., Howard, H., Kass, L. (1986). Migration of Limulus for mating: relation to lunar phase, tide height, and sunlight. Biol. Bull. mar. biol. Lab., Woods Hole 171: 310–329Google Scholar
  3. Behbehani, M. I., Croker, R. A. (1982). Ecology of beach wrack in northern New England with special reference to Orchestia platensis. Estuar. cstl Shelf Sci. 15: 611–620Google Scholar
  4. Botton, M. L. (1982). Predation by adult horseshoe crabs Limulus polyphemus (L.), and its effect on benthic intertidal community structure of breeding beaches in Delaware Bay, New Jersey. Ph. D. Thesis, Rutgers University, New BrunswickGoogle Scholar
  5. Botton, M. L. (1984). Diet and food preferences of the adult horseshoe crab Limulus polyphemus in Delaware Bay, New Jersey, USA. Mar. Biol. 81: 199–207Google Scholar
  6. Botton, M. L., Loveland, R. E. (1987). Orientation of the horseshoe crab, Limulus polyphemus, on a sandy beach. Biol. Bull. mar. biol. Lab., Woods Hole 173: 289–298Google Scholar
  7. Botton, M. L., Loveland, R. E., Jacobsen, T. R. (1988). Beach erosion and geochemical factors: influence on spawning success of horseshoe crabs (Limulus polyphemus) in Delaware Bay. Mar. Biol. 99: 325–332Google Scholar
  8. Botton, M. L., Ropes, J. W. (1987a). Populations of horseshoe crabs on the northwestern Atlantic continental shelf. Fish. Bull. U.S. 85: 805–812Google Scholar
  9. Botton, M. L., Ropes, J. W. (1987b). The horseshoe crab, Limulus polyphemus, fishery and resource in the United States. Mar. Fish. Rev. 49: 57–61Google Scholar
  10. Ehrenfeld, D. W. (1979). Behavior associated with nesting. In: Harless, M., Morlock, H. (eds.) Turtles perspectives and research. John Wiley, New York, p. 417–434Google Scholar
  11. Fisher, D. C. (1977). Functional significance of spines in the Pennsylvanian horseshoe crab Euproops danae. Paleobiology 3: 175–195Google Scholar
  12. Fisher, D. C. (1984). The Xiphosurida: archetypes of bradytely? In: Eldredge, N., Stanley, S. M. (eds.) Living fossils. Springer Verlag, New York, p. 196–212Google Scholar
  13. Fortier, L., Leggett, W. C., Gosselin, S. (1987). Patterns of larval emergence and their potential impact on stock differentiation in beach spawning capelin (Mallotus villosus). Can. J. Fish. aquat. Sci. 44: 1326–1336Google Scholar
  14. Fraenkel, G. (1960) Lethal high temperatures for three marine invertebrates: Limulus polyphemus, Littorina littorea and Pagurus longicarpus. Oikos 11: 171–182Google Scholar
  15. Groff, J., Leibovitz, L. (1982). A gill disease of Limulus polyphemus associated with triclad turbellarian worm infection. Biol. Bull. mar. biol. Lab., Woods Hole 163: 392Google Scholar
  16. Hock, C. W. (1940). Decomposition of chitin by marine bacteria. Biol. Bull. mar. biol. Lab., Woods Hole 79: 199–206Google Scholar
  17. Hummon, W. D., Fleeger, J. W., Hummon, M. R. (1976). Meiofauna-macrofauna interactions. 1. Sand beach meiofauna affected by maturing Limulus eggs. Chesapeake Sci. 17: 297–299Google Scholar
  18. Jegla, T. C., Costlow, J. D. (1982). Temperature and salinity effects on developmental and early posthatch stages of Limulus. In: Bonaventura, J., Bonaventura, C., Tesh, S. (eds.) Physiology and biology of horseshoe crabs. Alan R. Liss, New York, p. 103–113Google Scholar
  19. Johnson, C., Kube, P. (1985). Occurrence of forked tails in horseshoe crabs. Underwat. Nat. 15(3): 25–26Google Scholar
  20. Laughlin, R. B., Neff, J. M. (1977). Interactive effects of temperature, salinity shock and chronic exposure to No. 2 fuel oil on survival, development rate and respiration of the horseshoe crab, Limulus polyphenus. In: Wolff, D. A. (ed.) Fate and effects of petroleum hydrocarbons in marine organisms and ecosystems. Pergamon, Oxford, p. 182–194Google Scholar
  21. Leibovitz, L. (1986). Cyanobacterial diseases of the horseshoe crab (Limulus polyphemus). Biol. Bull. mar. biol. Lab., Woods Hole 171: 482–483Google Scholar
  22. Leibovitz, L., Lewbart, G. A. (1987). A green algal (chlorophycophytal) infection of the dorsal surface of the exoskeleton, and associated organ structures, in the horseshoe crab, Limulus polyphemus. Biol. Bull. mar. biol. Lab., Woods Hole 173: 430Google Scholar
  23. McManus, J. J. (1969). Osmotic relations in the horseshoe crab, Limulus polyphemus. Am. Midl. Nat. 81: 569–573Google Scholar
  24. Myers, J. P. (1986). Sex and gluttony on Delaware Bay. Nat. Hist. 95(5): 68–77Google Scholar
  25. Neff, J. M., Giam, C. S. (1977) Effects of Arochlor 1016 and Halowax 1099 on juvenile horseshoe crabs Limulus polyphemus. In: Vernberg, F. J., Calabrese, A., Thurberg, F. P., Vernberg, W. B. (eds.) Physiological responses of marine biota to pollutants. Academic Press, New York, p. 21–35Google Scholar
  26. Riska, B. (1981). Morphological variation in the horseshoe crab, Limulus polyphemus (L.). Evolution 35: 647–658Google Scholar
  27. Robertson, J. (1970). Osmotic and ionic regulation in the horseshoe crab Limulus polyphemus (Linnaeus). Biol. Bull. mar. biol. Lab., Woods Hole 138: 157–183Google Scholar
  28. Rudloe, A. (1985). Variation in the expression of lunar and tidal behavioral rhythms in the horseshoe crab, Limulus polyphemus. Bull. mar. Sci. 36: 388–395Google Scholar
  29. Rudloe, A., Herrnkind, W. F. (1976). Orientation of Limulus polyphemus in the vicinity of breeding beaches. Mar. Behav. Physiol. 4: 75–89Google Scholar
  30. SAS (1985a). SAS/STAT guide for personal computers. Version 6 edn. SAS Institute, Cary, North CarolinaGoogle Scholar
  31. SAS (1985b). SAS procedures guide for personal computers. Version 6 edn. SAS Institute, Cary, North CarolinaGoogle Scholar
  32. Shuster, C. N. Jr. (1979). Distribution of the American horseshoe “crab”, Limulus polyphemus (L.). In: Cohen, E. (ed.) Biomedical applications of the horseshoe crab (Limulidae). Alan R. Liss, New York, p. 3–26Google Scholar
  33. Shuster, C. N. Jr. (1982). A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. In: Bonaventura, J., Bonaventura, C., Tesh, S. (eds) Physiology and biology of horseshoe crabs. Alan R. Liss, New York, p. 1–52Google Scholar
  34. Shuster, C. N. Jr., Botton, M. L. (1985). A contribution to the population biology of horseshoe crabs, Limulus polyphemus, in Delaware Bay. Estuaries 8: 363–372Google Scholar
  35. Strobel, C. J., Brenowitz, A. H. (1981). Effects of Bunker C oil on juvenile horseshoe crabs (Limulus polyphemus). Estuaries 4: 157–59Google Scholar
  36. Taylor, M. H. (1984). Lunar synchronization of fish reproduction. Trans. Am. Fish Soc. 113: 484–495Google Scholar
  37. Templeman, W. (1948). The life history of the caplin (Mallotus villosus O. F. Müller) in Newfoundland waters. Bulletin of the Newfoundland Government Laboratory No 17. St. John's, NewfoundlandGoogle Scholar
  38. Vosatka, E. D. (1970). Observations on the swimming, righting, and burrowing movements of young horseshoe crabs, Limulus polyphemus. Ohio J. Sci. 70: 276–283Google Scholar
  39. Weis, J. S., Ma, A (1987). Effects of the pesticide diflubenzuron on larval horseshoe crabs, Limulus polyphemus. Bull. environ. Contam. Toxicol. 39: 224–228Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. L. Botton
    • 1
    • 2
  • R. E. Loveland
    • 3
  1. 1.Division of Science and MathematicsFordham University, College at Lincoln CenterNew YorkUSA
  2. 2.Shellfish Research LaboratoryRutgers-The State University, Cook CollegePort NorrisUSA
  3. 3.Department of Biological SciencesRutgers-The State UniversityPiscatawayUSA

Personalised recommendations