Skip to main content
Log in

Spring and summer growth rates of subarctic Pacific phytoplankton assemblages determined from carbon uptake and cell volumes estimated using epifluorescence microscopy

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In order to determine whether phytoplankton growth rates were normal or depressed, total plant carbon (μg l−1) and in situ production rates (μg C l−1 d−1) were measured for phytoplankton assemblages at Weathership Station P (50°N; 145°W) and at 53°N; 145°W in the subarctic Pacific in May and August 1984. Plant carbon, estimated from cell volumes determined using epifluorescence microscopy, was distributed as follow: 28% in the <2 μm fraction, 38% in the 2 to 5 μm size fraction, and the remainder in size classes >5 μm. Carbon-specific growth rates (k), as doublings d−1, were calculated for the phytoplankton assemblages as a whole at each sampling depth down to 100 m for three days in May and for four days in August. The populations in the upper part of the euphotic zone showed average doubling rates of 1 d−1 and thus appeared to be growing at rates normally expected for the prevailing conditions of light and temperature. The low chlorophyll concentrations (0.3 to 0.4 mg chl a m−3) characteristically found in this oceanic region do not seem to be due to very slow growth of algal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Anderson, G. C., Lam, R. L., Booth, B. C., Glass, J. M. (1977). A description and numerical analysis of the factors affecting the processes of production in the Gulf of Alaska. In: Environmental assessment of the Alaskan continental Shelf, Annual Reports of Principal Investigators for the Year Ending, March 1977, Vol. 7. Receptors — Fish, littoral, benthos. National Oceanic and Atmospheric Administration, U.S. Department of the Interior, Washington, D.C., p. 477–798 (Ref. NOAA-OCSEAP, NOAA 03-5-022-67)

    Google Scholar 

  • Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K. (1963). Measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr. 8: 166–183

    Google Scholar 

  • Beers, J. R., Stevenson, M. R., Eppley, R. W., Brooks, E. R. (1971). Plankton populations and upwelling off the coast of Peru, June 1969. Fish. Bull. U.S. 69: 859–876

    Google Scholar 

  • Bienfang, P. K., Takahashi, M. (1983). Ultraplankton growth rates in a subtropical ecosystem. Mar. Biol. 76: 213–218

    Google Scholar 

  • Booth, B. C. (1987). The use of autofluorescence for analyzing oceanic phytoplankton communities. Botanica mar. 30: 101–108

    Google Scholar 

  • Booth, B. C. (1988). Size classes and major taxonomic groups of phytoplankton at two locations in the subarctic Pacific Ocean in May and August, 1984. Mar. Biol. 97: 275–286

    Google Scholar 

  • Cuhel, R. L., Waterbury, J. B. (1984). Biochemical composition and short term nutrient incorporation patterns in a unicellular marine cyanobacterium, Synechococcus (WH 7803). Limnol. Oceanogr. 29: 370–373

    Google Scholar 

  • Denman, K. L., Gargett, A. E. (In press). Multiple thermoclines are barriers to vertical exchange in the subarctic Pacific during SUPER, May 1984. J. mar. Res.

  • Douglas, D. J. (1984). Microautoradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific gowth rates. Mar. Ecol. Prog. Ser. 14: 223–228

    Google Scholar 

  • Durbin, E. G., Krawiec, R. W., Smayda, T. J. (1975). Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay (USA). Mar. Biol. 32: 271–287

    Google Scholar 

  • Emery, W. J., Royer, T. C., Reynold, R. W. (1985). The anomalous tracks of North Pacific drifting buoys 1981–1983. Deep-Sea Res. 32: 315–347

    Google Scholar 

  • Eppley, R. W. (1972). The temperature and phytoplankton growth in the sea. Fish. Bull. U.S. 70: 1063–1085

    Google Scholar 

  • Eppley, R. W. (1977). The growth and culture of diatoms. In: Werner, D. (ed.) The biology of diatoms. Blackwell, Oxford, p. 24–64

    Google Scholar 

  • Eppley, R. W. (1981). Relations between nutrient assimilation and growth in phytoplankton with a brief review of estimates of growth in the ocean. Can. Bull. Fish. aquat. Sciences 210: 251–263

    Google Scholar 

  • Eppley, R. W., Reid, F. M. H., Strickland, J. D. H. (1970). Estimates of phytoplankton crop size, growth rate and primary production. Bull. Scripps Instn Oceanogr. 17: 33–42

    Google Scholar 

  • Eppley, R. W., Renger, E. H., Venrick, E. L., Mullin, M. M. (1973). A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean. Limnol. Oceanogr. 18: 534–551

    Google Scholar 

  • Frost, B. W. (1987). Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39: 49–68

    Google Scholar 

  • Furnas, M. J. (1982). Growth rates of summer nanoplankton (<10 μm) populations in Lower Narragansett Bay, Rhode Island, USA. Mar. Biol. 70: 105–115

    Google Scholar 

  • Furuya, K., Takahashi, M., Nemoto, T. (1986). Summer phytoplankton community structure and growth in a regional upwelling area off Hachijo Island, Japan. J. exp. mar. Biol. Ecol. 96: 43–55

    Google Scholar 

  • Goldman, J. C., Carpenter, E. J. (1974). A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19: 756–766

    Google Scholar 

  • Guillard, R. R. L. (1973). Division rates. In: Stein, J. R. (ed.) Handbook of phycological methods, Vol. I. Cambridge University Press, New york, p. 289–312

    Google Scholar 

  • Hobson, L. A. (1971). Relationships between particulate organic carbon and microorganisms in upwelling areas off SW Africa. Investigaćon pesq. 35: 195–208

    Google Scholar 

  • Iturriaga, R., Mitchell, B. G. (1986). Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar. Ecol. Prog. Ser. 28: 291–297

    Google Scholar 

  • Joint, I. R., Owens, N. J. P., Pomroy, A. J. (1986). Seasonal production of photosynthetic picoplankton and nanoplankton in the Celtic Sea. Mar. Ecol. Prog. Ser. 28: 251–258

    Google Scholar 

  • Joint, I. R., Pomroy, A. J. (1983). Production of picoplankton and small nanoplankton in the Celtic Sea. Mar. Biol. 77: 19–27

    Google Scholar 

  • Joint, I. R., Pomroy, A. J. (1986). Photosynthetic characteristics of nanoplankton and picoplankton from the surface mized layer. Mar. Biol. 92: 465–474

    Google Scholar 

  • Laws, E. A., Redalje, D. G., Haas, L. W., et al. (1984). High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29: 1161–1169

    Google Scholar 

  • Li, W. K., Subba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., Platt, T. (1983). Autotrophic picoplankton in the tropical ocean. Science, N.Y. 219: 292–295

    Google Scholar 

  • Lorenzen, C. J., Welschmeyer, N. A., Copping, A. E. (1983). Particulate organic carbon flux in the subarctic Pacific. Deep-Sea Res. 30: 639–643

    Google Scholar 

  • McAllister, C. D., Parsons, T. R., Strickland, J. D. H. (1960). Primary productivity at Station “P” in the north-east Pacific Ocean. J. Cons. perm.int. Explor. Mer 25: 240–259

    Google Scholar 

  • Miller, C. B., Denman, K. L., Gargett, A. E., Mackas, D. L., Wheeler, P., Booth, B. C., Frost, B. W., Landry, M. R., Lewin, J., Lorenzen, C. J., Perry, M. J., Dagg, M., Welschmeyer, N. (In press). Lower trophic level production dynamics in the oceanic subarctic Pacific Ocean. Bull. Ocean Res. Inst. Univ. Tokyo

  • Morris, I., Glover, H. (1981). Physiology of photosynthesis by marine coccoid cyanobacteria — some ecological implications. Limnol. Oceanogr. 26: 957–961

    Google Scholar 

  • Platt, T., Subba Rao, D. V., Irwin, B. (1983). Photosynthesis of picoplankton in the oligotrophic ocean. Nature, Lond. 301: 702–704

    Google Scholar 

  • Redalje, D. G. (1983). Phytoplankton carbon biomass and specific growth rates determined with the labeled chlorophyll a technique. Mar. Ecol. Prog. Ser 11: 217–225

    Google Scholar 

  • Redalje, D. G., Laws, E. A. (1981). A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62: 73–79

    Google Scholar 

  • Ryther, J. H., Menzel, D. W. (1965). On the production, composition and distribution of organic matter in the Western Arabian Sea. Deep-Sea Res. 12: 199–209

    Google Scholar 

  • Saino, T., Hattori, A. (1977). Estimate of the growth rate of phytoplankton in the surface waters of the Bering Sea and the northern north Pacific. Mar. Sci. Communs 3: 1–19

    Google Scholar 

  • Sheldon, R. W., Sutcliffe, W. H. (1978). Generation times of 3 hours for Sargasso Sea microplankton determined by ATP analysis. Limnol. Oceanogr. 23: 1051–1055

    Google Scholar 

  • Smayda, T. J. (1973). The growth of Skeletonema costatum during the winter-spring bloom in Narragansett Bay, R. I. Norw. J. Bot. 20: 219–247

    Google Scholar 

  • Smayda, T. J. (1975). Phased cell division in natural populations of the marine diatom Ditylum briightwelli and the potential significance of diel phytoplankton behavior in the sea. Deep-Sea Res. 22: 151–165

    Google Scholar 

  • Strathmann, R. R. (1967). Estimating the organic carbon content of phytoplankton from cell volume of plasma volume. Limnol. Oceanogr. 12: 411–418

    Google Scholar 

  • Strickland, J. D. H., Holm-Hansen, O., Eppley, R. W., Linn, R. J. (1969). The use of a deep tank in plankton ecology. I. Studies of the growth and composition of phytoplankton crops at low nutrient levels. Limnol. Oceanogr. 14: 23–24

    Google Scholar 

  • Swift, E., Durbin, E. G. (1972). The phased division and cytological characteristics of Pyrocystis spp. can be used to estimate doubling times of their populations in the sea. Deep-Sea Res. 19: 189–198

    Google Scholar 

  • Tabata, S., Paert, J. L. (1985). Statistics of oceanographic data based on hydrographic/STD casts made at Ocean Station P during August 1956 through June 1981. Can. Data Rep. Hydrogr. Ocean Sciences 31: 1–133

    Google Scholar 

  • Utermöhl, H. (1931). Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verh. int. Verein. theor. angew. Limnol. 5: 567–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. C. Schroeder, Pullman

Contribution No. 1695 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, B.C., Lewin, J. & Lorenzen, C.J. Spring and summer growth rates of subarctic Pacific phytoplankton assemblages determined from carbon uptake and cell volumes estimated using epifluorescence microscopy. Mar. Biol. 98, 287–298 (1988). https://doi.org/10.1007/BF00391207

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391207

Keywords

Navigation